Версия для печати
Убрать все задачи
Расстояния от центра описанной окружности остроугольного
треугольника до его сторон равны da, db и dc. Докажите,
что
da + db + dc = R + r.
Решение
B некоторой трапеции сумма длин боковой стороны и диагонали равна сумме длин
другой боковой стороны и другой диагонали.
Докажите, что трапеция равнобокая.
Точки M и N принадлежат боковым сторонам соответственно AB и AC равнобедренного треугольника ABC, причём MN || BC, а в трапецию BMNC можно вписать окружность. Её радиус равен R, а радиус вписанной окружности треугольника AMN равен r. Найдите
а) основание BC;
б) расстояние от точки A до ближайшей точки касания;
в) расстояние между хордами окружностей, соединяющими точки касания с боковыми сторонами трапеции BMNC.
Пусть p – полупериметр остроугольного треугольника ABC,
q – полупериметр треугольника, образованного основаниями его высот.
Докажите, что p : q = R : r, где R и r – радиусы описанной и вписанной окружностей треугольника ABC.