Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Все плоские углы трёхгранного угла равны 90o . Найдите углы между биссектрисами плоских углов.

Вниз   Решение


Чему равна сумма arctg x + arcctg x

ВверхВниз   Решение


Делится ли на 1999 сумма чисел 1 + 2 + 3 +...+ 1999?

ВверхВниз   Решение


В выпуклом четырехугольнике ABCD взят четырехугольник KLMN, образованный центрами тяжести треугольников ABC, BCD, DBA и CDA. Доказать, что прямые, соединяющие середины противоположных сторон четырехугольника ABCD, пересекаются в той же точке, что и прямые, соединяющие середины противоположных сторон четырехугольника KLMN.

ВверхВниз   Решение


Докажите формулы:

arcsin(- x) = - arcsin x,    arccos(- x) = $\displaystyle \pi$ - arccos x.


ВверхВниз   Решение


Докажите равенство   (a2 + b2)(u2 + v2) = (au + bv)2 + (av – bu)2.

ВверхВниз   Решение


Дан многочлен  P(x) = a2nx2n + a2n–1x2n–1 + ... + a1x + a0,  у которого каждый коэффициент ai принадлежит отрезку  [100, 101].
При каком минимальном натуральном n у такого многочлена может найтись действительный корень?

ВверхВниз   Решение


Стороны AB, BC, CD, DA пространственного четырёхугольника ABCD касаются некоторой сферы в точках K, L, M, N соответственно.
Докажите, что точки K, L, M, N лежат в одной плоскости.

ВверхВниз   Решение


Вычислите следующие произведения:
а) sin 20osin 40osin 60osin 80o;
б) cos 20ocos 40ocos 60ocos 80o.

ВверхВниз   Решение


Докажите, что сумма $\frac {1}{\sqrt {1} + \sqrt {2}} + \frac {1}{\sqrt {2} + \sqrt {3}} + \dots + \frac {1}{\sqrt {99} + \sqrt {100}}$ является целым числом.

ВверхВниз   Решение


Дана замкнутая пространственная ломаная с вершинами A1, A2, ..., An, причём каждое звено пересекает фиксированную сферу в двух точках, а все вершины ломаной лежат вне сферы. Эти точки делят ломаную на 3n отрезков. Известно, что отрезки, прилегающие к вершине A1, равны между собой. То же самое верно и для вершин A2, A3, ..., An - 1. Доказать, что отрезки, прилегающие к вершине An, также равны между собой.

ВверхВниз   Решение


Прямая l пересекает две окружности в четырех точках. Докажите, что четырехугольник, образованный касательными в этих точках, описанный, причем центр его описанной окружности лежит на прямой, соединяющей центры данных окружностей.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 10]      



Задача 78016

Тема:   [ Окружность Ферма-Аполлония ]
Сложность: 4
Классы: 9,10

На двух лучах l1 и l2, исходящих из точки O, отложены отрезки OA1 и OB1 на луче l1 и OA2 и OB2 на луче l2; при этом $ {\frac{OA_1}{OA_2}}$$ \ne$$ {\frac{OB_1}{OB_2}}$. Определить геометрическое место точек S пересечения прямых A1A2 и B1B2 при вращении луча l2 около точки O (луч l1 неподвижен).
Прислать комментарий     Решение


Задача 109017

Темы:   [ Окружность Ферма-Аполлония ]
[ ГМТ - окружность или дуга окружности ]
[ Метод координат на плоскости ]
Сложность: 4
Классы: 8,9,10

На плоскости даны точки A и B . Доказать, что множество всех точек M , удалённых от A в 3 раза больше, чем от B , есть окружность.
Прислать комментарий     Решение


Задача 57177

Тема:   [ Окружность Ферма-Аполлония ]
Сложность: 4+
Классы: 9

Докажите, что множество точек X, обладающих тем свойством, что  k1A1X2 + ... + knAnX2 = c:
а) при  k1 + ... + kn$ \ne$ 0 является окружностью или пустым множеством;
б) при  k1 + ... + kn = 0 является прямой, плоскостью или пустым множеством.
Прислать комментарий     Решение


Задача 54550

 [Окружность Аполлония.]
Темы:   [ Окружность Ферма-Аполлония ]
[ Отношение, в котором биссектриса делит сторону ]
[ Метод координат на плоскости ]
Сложность: 5-
Классы: 8,9

Найдите геометрическое место точек, расстояния от каждой из которых до двух данных точек относятся как m : n.

Прислать комментарий     Решение


Задача 57178

Тема:   [ Окружность Ферма-Аполлония ]
Сложность: 5
Классы: 9

Прямая l пересекает две окружности в четырех точках. Докажите, что четырехугольник, образованный касательными в этих точках, описанный, причем центр его описанной окружности лежит на прямой, соединяющей центры данных окружностей.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 10]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .