Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 289]
Докажите, что если длины сторон треугольника
связаны неравенством
a2 +
b2 > 5
c2, то
c — длина наименьшей
стороны.
Две высоты треугольника равны 12 и 20. Докажите,
что третья высота меньше 30.
|
|
Сложность: 3 Классы: 8,9,10
|
Из шести палочек попарно различной длины сложены два треугольника (по
три палочки в каждом). Всегда ли можно сложить из них один
треугольник, стороны которого состоят из одной, двух и трех палочек
соответственно?
Из бумаги вырезан многоугольник. Две точки его границы соединяются отрезком,
по которому многоугольник складывается. Доказать, что периметр многоугольника,
получающегося после складывания, меньше периметра исходного многоугольника.
На окружности радиуса 1 отмечено 100 точек. Доказать, что на этой окружности
можно найти такую точку, чтобы сумма расстояний от неё до всех отмеченных
точек была больше 100.
Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 289]