ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

а) Докажите, что в любом выпуклом шестиугольнике площади S найдется диагональ, отсекающая от него треугольник площади не больше S/6.
б) Докажите, что в любом выпуклом восьмиугольнике площади S найдется диагональ, отсекающая от него треугольник площади не больше S/8.

   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 78]      



Задача 78085

Темы:   [ Неравенства с площадями ]
[ Итерации ]
Сложность: 5
Классы: 9,10,11

В прямоугольнике площадью 5 кв. единиц расположены девять прямоугольников, площадь каждого из которых равна единице. Докажите, что площадь общей части некоторых двух прямоугольников больше или равна 1/9.
Прислать комментарий     Решение


Задача 57350

Тема:   [ Неравенства с площадями ]
Сложность: 5+
Классы: 9

а) Докажите, что в любом выпуклом шестиугольнике площади S найдется диагональ, отсекающая от него треугольник площади не больше S/6.
б) Докажите, что в любом выпуклом восьмиугольнике площади S найдется диагональ, отсекающая от него треугольник площади не больше S/8.
Прислать комментарий     Решение


Задача 57351

Тема:   [ Неравенства с площадями ]
Сложность: 5+
Классы: 9

Проекции многоугольника на ось OX, биссектрису 1-го и 3-го координатных углов, ось OY и биссектрису 2-го и 4-го координатных углов равны соответственно 4, 3$ \sqrt{2}$, 5, 4$ \sqrt{2}$. Площадь многоугольника — S. Докажите, что S$ \le$17, 5.
Прислать комментарий     Решение


Задача 78080

Темы:   [ Неравенства с площадями ]
[ Итерации ]
Сложность: 6
Классы: 8,9

На столе лежат 15 журналов, закрывающих его целиком. Докажите, что можно забрать семь журналов так, чтобы оставшиеся журналы закрывали не меньше 8/15 площади стола. (Эту задачу не решил никто из участников олимпиады.)
Прислать комментарий     Решение


Задача 78145

Темы:   [ Неравенства с площадями ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 6+
Классы: 10,11

Проекции плоского выпуклого многоугольника на ось OX, биссектрису 1-го и 3-го координатных углов, ось OY и биссектрису 2-го и 4-го координатных углов соответственно равны 4, 3$ \sqrt{2}$, 5, 4$ \sqrt{2}$. Площадь многоугольника равна S. Доказать, что S$ \ge$10.
Прислать комментарий     Решение


Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 78]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .