ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Как правило знаков Декарта применить к оценке числа отрицательных корней многочлена f(x) = anxn + ... + a1x + a0?
На диагоналях D1A , A1B , B1C , C1D граней
куба ABCDA1B1C1D1 взяты соответственно точки M ,
N , P , Q , причём
а прямые MN и PQ взаимно перпендикулярны. Найдите μ . Окружность задана уравнением f (x, y) = 0, где
f (x, y) = x2 + y2 + ax + by + c.
Докажите, что степень точки (x0, y0) относительно этой окружности равна
f (x0, y0).
В прямоугольнике площади 1 расположено пять фигур площади ½ каждая. Докажите, что найдутся Известно, что число a положительно, а неравенство 10 < ax < 100 имеет ровно пять решений в натуральных числах. Расстояние между Атосом и Арамисом, скачущими по одной дороге, равно 20 лье. За час Атос покрывает 4 лье, а Арамис – 5 лье. Докажите, что если треугольник не тупоугольный,
то
ma + mb + mc |
Страница: 1 2 3 4 >> [Всего задач: 16]
Стороны треугольника равны a, b, c. Известно, что a3=b3+c3. Докажите, что этот треугольник остроугольный.
Докажите, что для остроугольного треугольника
Докажите, что для остроугольного треугольника
Докажите, что если треугольник не тупоугольный,
то
ma + mb + mc
Докажите, что если в остроугольном
треугольнике
ha = lb = mc, то этот треугольник равносторонний.
Страница: 1 2 3 4 >> [Всего задач: 16]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке