ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Экстремальные свойства. Задачи на максимум и минимум.
>>
Треугольник (экстремальные свойства)
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Найдите внутри треугольника ABC точку O, для которой сумма квадратов расстояний от нее до сторон треугольника минимальна. Решение |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 43]
Дан остроугольный треугольник ABC. Прямая, параллельная BC, пересекает стороны AB и AC в точках M и P соответственно. При каком расположении точек M и P радиус окружности, описанной около треугольника BMP, будет наименьшим?
Две окружности пересекаются в точках P и Q. Tочка A лежит на первой окружности, но вне второй. Прямые AP и AQ пересекают вторую окружность в точках B и C соответственно. Укажите положение точки A, при котором треугольник ABC имеет наибольшую площадь.
В треугольник с периметром 2p вписана окружность. К этой окружности проведена касательная, параллельная стороне треугольника. Найдите наибольшую возможную длину отрезка этой касательной, заключённого внутри треугольника.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 43] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|