ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 42]      



Задача 57527

Тема:   [ Экстремальные свойства треугольника (прочее) ]
Сложность: 5
Классы: 9

В данный треугольник поместите центрально симметричный многоугольник наибольшей площади.
Прислать комментарий     Решение


Задача 57528

Тема:   [ Экстремальные свойства треугольника (прочее) ]
Сложность: 5
Классы: 9

Площадь треугольника ABC равна 1. Пусть A1, B1, C1 — середины сторон BC, CA, AB соответственно. На отрезках AB1, CA1, BC1 взяты точки K, L, M соответственно. Чему равна минимальная площадь общей части треугольников KLM и A1B1C1?
Прислать комментарий     Решение


Задача 55457

Темы:   [ Треугольник (экстремальные свойства) ]
[ Построения (прочее) ]
[ Вневписанные окружности ]
[ Окружность, вписанная в угол ]
Сложность: 5
Классы: 8,9,10

С помощью циркуля и линейки проведите через данную точку прямую, отсекающую от данного угла треугольник наименьшего возможного периметра.

Прислать комментарий     Решение


Задача 73742

Темы:   [ Экстремальные свойства треугольника (прочее) ]
[ Отношение площадей подобных треугольников ]
[ Наибольшая или наименьшая длина ]
[ Поворот помогает решить задачу ]
[ Подобные треугольники (прочее) ]
Сложность: 5+
Классы: 9,10,11

Даны два треугольника A1A2A3 и B1B2B3. "Опишите" вокруг треугольника A1A2A3 треугольник M1M2M3 наибольшей площади, подобный треугольнику B1B2B3 (вершина A1 должна лежать на прямой M2M3, вершина A2 – на прямой A1A3, вершина A3 – на прямой A1A2).

Прислать комментарий     Решение

Задача 57529

Темы:   [ Экстремальные свойства треугольника (прочее) ]
[ Площадь треугольника (через высоту и основание) ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Правильный (равносторонний) треугольник ]
Сложность: 5+
Классы: 8,9,10

Какую наименьшую ширину должна иметь бесконечная полоса бумаги, из которой можно вырезать любой треугольник площадью 1?
Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 42]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .