Страница:
<< 3 4 5 6 7
8 9 >> [Всего задач: 43]
[Точка Торричелли]
|
|
Сложность: 6 Классы: 8,9,10
|
Дан треугольник
ABC. Найдите внутри его точку
O, для которой сумма
длин отрезков
OA,
OB,
OC минимальна. (Обратите внимание на тот
случай, когда один из углов треугольника больше
120
o.)
|
|
Сложность: 6 Классы: 9,10,11
|
Найдите внутри треугольника
ABC точку
O, для которой сумма
квадратов расстояний от нее до сторон треугольника минимальна.
|
|
Сложность: 2+ Классы: 10,11
|
Дан остроугольный треугольник ABC. Прямая, параллельная BC, пересекает
стороны AB и AC в точках M и P соответственно. При каком расположении точек M
и P радиус
окружности, описанной около треугольника BMP, будет наименьшим?
|
|
Сложность: 3+ Классы: 9,10,11
|
Две окружности пересекаются в точках P и Q. Tочка A лежит на первой окружности, но вне второй. Прямые AP и AQ пересекают вторую окружность в точках B и C соответственно. Укажите положение точки A, при котором треугольник ABC имеет наибольшую площадь.
В треугольник с периметром 2p вписана окружность. К этой окружности проведена касательная, параллельная стороне треугольника. Найдите наибольшую возможную длину отрезка этой касательной, заключённого внутри треугольника.
Страница:
<< 3 4 5 6 7
8 9 >> [Всего задач: 43]