Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Противоположные рёбра треугольной пирамиды попарно равны. Докажите, что все грани этой пирамиды – равные остроугольные треугольники.

Вниз   Решение


На клавиатуре калькулятора есть цифры от 0 до 9 и знаки двух действий (см. рисунок). Вначале на дисплее написано число 0. Можно нажимать любые клавиши. Калькулятор выполняет действия в последовательности нажатий. Если знак действия нажать подряд несколько раз, то калькулятор запомнит только последнее нажатие. Рассеянный Учёный нажал очень много кнопок в случайной последовательности. Найдите приблизительно вероятность, с которой результат получившейся цепочки действий – нечётное число?

ВверхВниз   Решение


Автор: Фольклор

В классе 32 ученика. Было организовано 33 кружка, причём каждый кружок состоит из трёх человек и никакие два кружка не совпадают по составу. Доказать, что найдутся такие два кружка, которые пересекаются ровно по одному ученику.

ВверхВниз   Решение


Сколько сторон может иметь выпуклый многоугольник, все диагонали которого имеют одинаковую длину?

ВверхВниз   Решение


Нарисуйте изображение куба, полученное в результате ортогонального проектирования куба на плоскость, перпендикулярную: а) одному из рёбер; б) диагонали одной из граней.

ВверхВниз   Решение


Доказать, что на сфере нельзя так расположить три дуги больших окружностей в 300o каждая, чтобы никакие две из них не имели ни общих точек, ни общих концов.

Примечание: Большая окружность – это окружность, полученная в сечении сферы плоскостью, проходящей через ее центр.

ВверхВниз   Решение


С помощью циркуля и линейки постройте параллелограмм по углу и диагоналям.

ВверхВниз   Решение


Постройте треугольник ABC по: а) c, a - b (a > b) и углу C; б) c, a + b и углу C.

ВверхВниз   Решение


Когда закончился хоккейный турнир (в один круг), оказалось, что для каждой группы команд можно найти команду (может быть, из той же группы), которая набрала в играх с командами этой группы нечётное число очков. Докажите, что в турнире участвовало чётное число команд. (Поражение – 0 очков, ничья – 1 очко, выигрыш – 2 очка.)

ВверхВниз   Решение


Найдите внутри треугольника ABC точку O, обладающую следующим свойством: для любой прямой, проходящей через O и пересекающей сторону AB в точке K и сторону BC в точке L, выполнено равенство p$ {\frac{AK}{KB}}$ + q$ {\frac{CL}{LB}}$ = 1, где p и q — данные положительные числа.

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 79]      



Задача 57783

Тема:   [ Барицентрические координаты ]
Сложность: 4
Классы: 9,10

Пусть ($ \alpha$ : $ \beta$ : $ \gamma$) — абсолютные барицентрические координаты точки X; M — центр масс треугольника ABC. Докажите, что 3$ \overrightarrow{XM}$ = ($ \alpha$ - $ \beta$)$ \overrightarrow{AB}$ + ($ \beta$ - $ \gamma$)$ \overrightarrow{BC}$ + ($ \gamma$ - $ \alpha$)$ \overrightarrow{CA}$.
Прислать комментарий     Решение


Задача 78542

Темы:   [ Центр масс ]
[ Поворот помогает решить задачу ]
Сложность: 4
Классы: 9,10,11

Дана система из n точек на плоскости, причём известно, что для любых двух точек данной системы можно указать движение плоскости, при котором первая точка перейдёт во вторую, а система перейдёт сама в себя. Доказать, что все точки такой системы лежат на одной окружности.
Прислать комментарий     Решение


Задача 73778

Тема:   [ Теорема о группировке масс ]
Сложность: 4+
Классы: 8,9,10

n отрезков A1 B1 , A2 B2 , ... , An Bn (рис. 5) расположены на плоскости так, что каждый из них начинается на одной из двух данных прямых, оканчивается на другой прямой, и проходит через точку G (не лежащую на данных прямых) — центр тяжести единичных масс, помещенных в точках A1 , A2 , ... , An . Докажите, что

++...+=n.

Прислать комментарий     Решение

Задача 57754

Тема:   [ Теорема о группировке масс ]
Сложность: 5
Классы: 9

На сторонах AB, BC, CD и DA выпуклого четырехугольника ABCD взяты точки K, L, M и N соответственно, причем AK : KB = DM : MC = $ \alpha$ и  BL : LC = AN : ND = $ \beta$. Пусть P — точка пересечения отрезков KM и LN. Докажите, что NP : PL = $ \alpha$ и  KP : PM = $ \beta$.
Прислать комментарий     Решение


Задача 57755

Тема:   [ Теорема о группировке масс ]
Сложность: 5
Классы: 9

Найдите внутри треугольника ABC точку O, обладающую следующим свойством: для любой прямой, проходящей через O и пересекающей сторону AB в точке K и сторону BC в точке L, выполнено равенство p$ {\frac{AK}{KB}}$ + q$ {\frac{CL}{LB}}$ = 1, где p и q — данные положительные числа.
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 79]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .