ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Автор: Тарасов А.

  Как известно, Луна вращается вокруг Земли. Будем считать, что Земля и Луна – это точки, а Луна вращается вокруг Земли по круговой орбите с периодом один оборот в месяц. Летающая тарелка находится в плоскости лунной орбиты. Она может перемещаться прыжками через Луну и Землю: из старого места (точки А) она моментально появляется в новом (в точке A') так, что в середине отрезка АA' находится или Луна, или Земля. Между прыжками летающая тарелка неподвижно висит в космическом пространстве.
  а) Определите, какое минимальное количество прыжков потребуется летающей тарелке, чтобы допрыгнуть из любой точки внутри лунной орбиты до любой другой точки внутри лунной орбиты.
  б) Докажите, что летающая тарелка, используя неограниченное количество прыжков, может допрыгнуть из любой точки внутри лунной орбиты до любой другой точки внутри лунной орбиты за любой промежуток времени, например, за секунду.

Вниз   Решение


На какое наименьшее число непересекающихся трёхгранных углов можно разбить пространство?

ВверхВниз   Решение


На прямой AB взяты точки P и P1, а на прямой AC взяты точки Q и Q1. Прямая, соединяющая точку A с точкой пересечения прямых PQ и P1Q1, пересекает прямую BC в точке D. Докажите, что

$\displaystyle {\frac{\overline{BD}}{\overline{CD}}}$ = $\displaystyle {\frac{(\overline{BP}/\overline{PA})-(\overline{BP_1}/
\overline{P_1A})}{(\overline{CQ}/\overline{QA})-(\overline{CQ_1}/\overline{Q_1A})}}$.

Вверх   Решение

Задачи

Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 298]      



Задача 57763

Тема:   [ Теорема о группировке масс ]
Сложность: 6
Классы: 9

На сторонах BC, CA и AB треугольника ABC взяты точки A1, B1 и C1; прямые B1C1, BB1 и CC1 пересекают прямую AA1 в точках M, P и Q соответственно. Докажите, что:
а) A1M/MA = (A1P/PA) + (A1Q/QA);
б) если P = Q, то MC1 : MB1 = (BC1/AB) : (CB1/AC).
Прислать комментарий     Решение


Задача 57764

Тема:   [ Теорема о группировке масс ]
Сложность: 6
Классы: 9

На прямой AB взяты точки P и P1, а на прямой AC взяты точки Q и Q1. Прямая, соединяющая точку A с точкой пересечения прямых PQ и P1Q1, пересекает прямую BC в точке D. Докажите, что

$\displaystyle {\frac{\overline{BD}}{\overline{CD}}}$ = $\displaystyle {\frac{(\overline{BP}/\overline{PA})-(\overline{BP_1}/
\overline{P_1A})}{(\overline{CQ}/\overline{QA})-(\overline{CQ_1}/\overline{Q_1A})}}$.

Прислать комментарий     Решение

Задача 57773

Тема:   [ Момент инерции ]
Сложность: 6
Классы: 9

Точки A1,..., An лежат на одной окружности, а M — их центр масс. Прямые MA1,..., MAn пересекают эту окружность в точках B1,..., Bn (отличных от A1,..., An). Докажите, что MA1 +...+ MAn$ \le$MB1 +...+ MBn.
Прислать комментарий     Решение


Задача 57776

Тема:   [ Центр масс (прочее) ]
Сложность: 6
Классы: 9

Решите задачу 13.44, используя свойства центра масс.
Прислать комментарий     Решение


Задача 57777

Тема:   [ Центр масс (прочее) ]
Сложность: 6
Классы: 9

На сторонах BC и CD параллелограмма ABCD взяты точки K и L так, что BK : KC = CL : LD. Докажите, что центр масс треугольника AKL лежит на диагонали BD.
Прислать комментарий     Решение


Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 298]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .