|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Докажите, что для любого натурального N существует N точек, никакие три из которых не лежат на одной прямой и все попарные расстояния между которыми являются целыми числами. Даны две окружности S1, S2 и прямая l. Проведите прямую l1, параллельную прямой l, так, чтобы: а) расстояние между точками пересечения l1 с окружностями S1 и S2 имело заданную величину a; б) S1 и S2 высекали на l1 равные хорды; в) S1 и S2 высекали на l1 хорды, сумма (или разность) длин которых имела бы заданную величину a. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 96]
Внутри параллелограмма ABCD выбрана точка O, причём ∠OAD = ∠OCD. Докажите, что ∠OBC = ∠ODC.
Две окружности радиуса R касаются в точке K. На одной из них
взята точка A, а на другой — точка B, причём
а) расстояние между точками пересечения l1 с окружностями S1 и S2 имело заданную величину a; б) S1 и S2 высекали на l1 равные хорды; в) S1 и S2 высекали на l1 хорды, сумма (или разность) длин которых имела бы заданную величину a.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 96] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|