ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дан параллелограмм ABCD и точка M. Через точки A, B, C и D проведены прямые, параллельные прямым MC, MD, MA и MB соответственно. Докажите, что они пересекаются в одной точке.

   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 158]      



Задача 57833

Тема:   [ Центральная симметрия (прочее) ]
Сложность: 2-
Классы: 9

Докажите, что при центральной симметрии окружность переходит в окружность.
Прислать комментарий     Решение


Задача 57835

Тема:   [ Центральная симметрия (прочее) ]
Сложность: 2-
Классы: 9

Противоположные стороны выпуклого шестиугольника попарно равны и параллельны. Докажите, что он имеет центр симметрии.
Прислать комментарий     Решение


Задача 57836

Тема:   [ Центральная симметрия (прочее) ]
Сложность: 2-
Классы: 9

Дан параллелограмм ABCD и точка M. Через точки A, B, C и D проведены прямые, параллельные прямым MC, MD, MA и MB соответственно. Докажите, что они пересекаются в одной точке.
Прислать комментарий     Решение


Задача 87952

Темы:   [ Центральная симметрия помогает решить задачу ]
[ Разрезания (прочее) ]
Сложность: 2-
Классы: 5,6,7

На прямоугольном торте лежит круглая шоколадка. Как разрезать торт на две равные части так, чтобы и шоколадка тоже разделилась ровно пополам?
Прислать комментарий     Решение


Задача 55631

Темы:   [ Центральная симметрия ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Четность и нечетность ]
Сложность: 3
Классы: 8,9

Выпуклый многоугольник имеет центр симметрии. Докажите, что сумма его углов делится на 360°.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 158]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .