ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Пусть $O$, $I$ – центры описанной и вписанной окружностей треугольника $ABC$; $R$, $r$ – их радиусы; $D$ – точка касания вписанной окружности со стороной $BC$; $N$ – произвольная точка на отрезке $ID$. Перпендикуляр к $ID$ в точке $N$ пересекает описанную окружность $ABC$ в точках $X$ и $Y$. Пусть $O_1$ – центр описанной окружности $XIY$. Найдите произведение $OO_1\cdot IN$.

Вниз   Решение


Вершины треугольника обозначены буквами A, B, C по часовой стрелке. Треугольник последовательно поворачивают по часовой стрелке: сначала вокруг вершины A на угол, равный углу A, потом – вокруг вершины B на угол, равный углу B, и так далее по циклу (каждый раз поворот делают вокруг текущего положения очередной вершины). Докажите, что после шести поворотов треугольник займёт исходное положение.

ВверхВниз   Решение


Пусть дан выпуклый (2n + 1)-угольник  A1A3A5...A2n + 1A2...A2n. Докажите, что среди всех замкнутых ломаных с вершинами в его вершинах наибольшую длину имеет ломаная  A1A2A3...A2n + 1A1.

ВверхВниз   Решение


Дан треугольник ABC. Докажите, что композиция симметрий S = SACoSABoSBC является скользящей симметрией, для которой вектор переноса имеет длину 2R sin$ \alpha$sin$ \beta$sin$ \gamma$, где R — радиус описанной окружности, $ \alpha$, $ \beta$, $ \gamma$ — углы данного треугольника.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 10]      



Задача 57903

Тема:   [ Композиции движений. Теорема Шаля ]
Сложность: 5
Классы: 9

Докажите, что любое движение плоскости является композицией не более чем трех симметрий относительно прямых.
Прислать комментарий     Решение


Задача 57904

Тема:   [ Композиции движений. Теорема Шаля ]
Сложность: 5
Классы: 9

Докажите, что любое движение первого рода является поворотом или параллельным переносом.
Прислать комментарий     Решение


Задача 57905

Тема:   [ Композиции движений. Теорема Шаля ]
Сложность: 5
Классы: 9

Докажите, что любое движение второго рода является скользящей симметрией.
Прислать комментарий     Решение


Задача 57906

Тема:   [ Композиции движений. Теорема Шаля ]
Сложность: 5
Классы: 9

Докажите, что композицию чётного числа симметрий относительно прямых нельзя представить в виде композиции нечётного числа симметрий относительно прямых.
Прислать комментарий     Решение


Задача 57907

Тема:   [ Композиции движений. Теорема Шаля ]
Сложность: 6
Классы: 9

Дан треугольник ABC. Докажите, что композиция симметрий S = SACoSABoSBC является скользящей симметрией, для которой вектор переноса имеет длину 2R sin$ \alpha$sin$ \beta$sin$ \gamma$, где R — радиус описанной окружности, $ \alpha$, $ \beta$, $ \gamma$ — углы данного треугольника.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 10]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .