ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Трапеции ABCD и APQD имеют общее основание AD, причем длины всех их оснований попарно различны. Докажите, что на одной прямой лежат точки пересечения следующих пар прямых:
а) AB и CD, AP и DQ, BP и CQ;
б) AB и CD, AQ и DP, BQ и CP.

   Решение

Задачи

Страница: << 1 2 3 >> [Всего задач: 12]      



Задача 58003

Темы:   [ Композиции гомотетий ]
[ Гомотетичные окружности ]
[ Окружность, вписанная в угол ]
[ Гомотетия помогает решить задачу ]
Сложность: 4+
Классы: 9,10

Общие внешние касательные к парам окружностей S1 и S2, S2 и S3, S3 и S1 пересекаются в точках A, B и C соответственно. Докажите, что точки A, B и C лежат на одной прямой.
Прислать комментарий     Решение


Задача 58004

Тема:   [ Композиции гомотетий ]
Сложность: 4+
Классы: 9,10,11

Трапеции ABCD и APQD имеют общее основание AD, причем длины всех их оснований попарно различны. Докажите, что на одной прямой лежат точки пересечения следующих пар прямых:
а) AB и CD, AP и DQ, BP и CQ;
б) AB и CD, AQ и DP, BQ и CP.
Прислать комментарий     Решение


Задача 58030

Тема:   [ Композиции гомотетий ]
Сложность: 4+
Классы: 9

а) На сторонах треугольника ABC построены собственно подобные треугольники A1BC, CAB1 и BC1A. Пусть A2, B2 и C2 — соответственные точки этих треугольников. Докажите, что $ \triangle$A2B2C2 $ \sim$ $ \triangle$A1BC.
б) Докажите, что центры правильных треугольников, построенных внешним (внутренним) образом на сторонах треугольника ABC, образуют правильный треугольник.
Прислать комментарий     Решение


Задача 108169

Темы:   [ Правильные многоугольники ]
[ Гомотетия помогает решить задачу ]
[ Композиции гомотетий ]
[ Поворот помогает решить задачу ]
[ Теоремы Чевы и Менелая ]
[ Теорема о группировке масс ]
Сложность: 5-
Классы: 8,9

а) Каждую сторону четырёхугольника в процессе обхода по часовой стрелке продолжили на её длину. Оказалось, что новые концы построенных отрезков служат вершинами квадрата. Докажите, что исходный четырёхугольник – квадрат.

б) Докажите, что если в результате такой же процедуры из некоторого n-угольника получается правильный n-угольник, то исходный многоугольник – правильный.

Прислать комментарий     Решение

Задача 108205

Темы:   [ Гомотетия помогает решить задачу ]
[ Касающиеся окружности ]
[ Композиции гомотетий ]
Сложность: 5
Классы: 9,10,11

Каждая из окружностей S1 , S2 и S3 касается внешним образом окружности S (в точках A1 , B1 и C1 соответственно) и двух сторон треугольника ABC (см.рис.). Докажите, что прямые AA1 , BB1 и CC1 пересекаются в одной точке.
Прислать комментарий     Решение


Страница: << 1 2 3 >> [Всего задач: 12]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .