ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Назовем крестом фигуру, образованную диагоналями квадрата со стороной 1 (рис.). Докажите, что в круге радиуса 100 можно разместить лишь конечное число непересекающихся крестов.


   Решение

Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 26]      



Задача 58101

Темы:   [ Принцип Дирихле (площадь и объем) ]
[ Площадь круга, сектора и сегмента ]
[ Площади криволинейных фигур ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4
Классы: 9,10

В квадрате со стороной 15 расположено 20 попарно непересекающихся квадратиков со стороной 1. Докажите, что в большом квадрате можно разместить круг радиуса 1 так, чтобы он не пересекался ни с одним из квадратиков.
Прислать комментарий     Решение


Задача 79358

Темы:   [ Принцип Дирихле (площадь и объем) ]
[ Сферы (прочее) ]
[ Параллелепипеды (прочее) ]
Сложность: 4
Классы: 10,11

У белой сферы 12% её площади окрашено в красный цвет. Доказать, что в сферу можно вписать параллелепипед, у которого все вершины белые.
Прислать комментарий     Решение


Задача 78270

Темы:   [ Принцип Дирихле (площадь и объем) ]
[ Площади криволинейных фигур ]
Сложность: 4+
Классы: 8,9,10

В прямоугольник со сторонами 20 и 25 бросают 120 квадратов со стороной 1. Доказать, что в прямоугольник можно поместить круг диаметра 1, не пересекающийся ни с одним из квадратов.
Прислать комментарий     Решение


Задача 58102

Темы:   [ Принцип Дирихле (площадь и объем) ]
[ Геометрия на клетчатой бумаге ]
[ Теорема Минковского ]
Сложность: 5
Классы: 8,9,10

Дана бесконечная клетчатая бумага и фигура, площадь которой меньше площади клетки. Докажите, что эту фигуру можно положить на бумагу, не накрыв ни одной вершины клетки.
Прислать комментарий     Решение


Задача 58103

Темы:   [ Принцип Дирихле (площадь и объем) ]
[ Упаковки ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 5
Классы: 8,9,10

Назовем крестом фигуру, образованную диагоналями квадрата со стороной 1 (рис.). Докажите, что в круге радиуса 100 можно разместить лишь конечное число непересекающихся крестов.


Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 >> [Всего задач: 26]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .