ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

На боковых рёбрах PA , PB , PC (или на их продолжениях) треугольной пирамиды PABC взяты точки M , N , K соответственно. Докажите, что отношение объёмов пирамид PMNK и PABC равно

· · .

Вниз   Решение


На плоскости нарисованы n > 2 различных векторов  a1, a2, ..., an  с равными длинами. Оказалось, что все векторы  –a1 + a2 + ... + an,
a1a2 + a3 + ... + ana1 + a2 + ... + an–1an   также имеют равные длины. Докажите, что  a1 + a2 + ... + an = 0.

ВверхВниз   Решение


Дана бесконечная последовательность многочленов P1(x), P2(x), ... . Всегда ли существует конечный набор функций  f1(x),  f2(x), ...,  fN(x), композициями которых можно записать любой из них (например,  P1(x) =  f2(f1(f2(x))))?

ВверхВниз   Решение


Точка M принадлежит ребру CD параллелепипеда ABCDA1B1C1D1 , причём CM:MD = 1:2 . Постройте сечение параллелепипеда плоскостью, проходящей через точку M параллельно прямым DB и AC1 . В каком отношении эта плоскость делит диагональ A1C параллелепипеда?

ВверхВниз   Решение


Две окружности, пересекающиеся в точке A, касаются окружности (или прямой) S1 в точках B1 и C1, а окружности (или прямой) S2 в точках B2 и C2 (причем касание в B2 и C2 такое же, как в B1 и C1). Докажите, что окружности, описанные вокруг треугольников AB1C1 и AB2C2, касаются друг друга.

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 113]      



Задача 58345

Темы:   [ Инверсия помогает решить задачу ]
[ Касающиеся окружности ]
[ Пересекающиеся окружности ]
Сложность: 5
Классы: 9,10,11

Через точки A и B проведены окружности S1 и S2, касающиеся окружности S, и окружность S3, перпендикулярная S. Докажите, что S3 образует равные углы с окружностями S1 и S2.
Прислать комментарий     Решение


Задача 58346

Темы:   [ Инверсия помогает решить задачу ]
[ Вписанные и описанные окружности ]
[ Касающиеся окружности ]
[ Пересекающиеся окружности ]
Сложность: 5
Классы: 9,10,11

Две окружности, пересекающиеся в точке A, касаются окружности (или прямой) S1 в точках B1 и C1, а окружности (или прямой) S2 в точках B2 и C2 (причем касание в B2 и C2 такое же, как в B1 и C1). Докажите, что окружности, описанные вокруг треугольников AB1C1 и AB2C2, касаются друг друга.
Прислать комментарий     Решение


Задача 58347

Темы:   [ Инверсия помогает решить задачу ]
[ Касающиеся окружности ]
[ Признаки и свойства касательной ]
Сложность: 5
Классы: 9,10,11

Окружность SA проходит через точки A и C; окружность SB проходит через точки B и C; центры обеих окружностей лежат на прямой AB. Окружность S касается окружностей SA и SB, а кроме того, она касается отрезка AB в точке C1. Докажите, что CC1 — биссектриса треугольника ABC.
Прислать комментарий     Решение


Задача 58350

Темы:   [ Точки, лежащие на одной окружности, и окружности, проходящие через одну точку ]
[ Инверсия помогает решить задачу ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 5
Классы: 9,10,11

Даны четыре окружности S1, S2, S3, S4. Пусть S1 и S2 пересекаются в точках A1 и A2, S2 и S3 — в точках B1 и B2, S3 и S4 — в точках C1 и C2, S4 и S1 — в точках D1 и D2 (рис.). Докажите, что если точки A1, B1, C1, D1 лежат на одной окружности S (или прямой), то и точки A2, B2, C2, D2 лежат на одной окружности (или прямой).


Прислать комментарий     Решение

Задача 67129

Темы:   [ Цепочки окружностей. Теорема Фейербаха ]
[ Теорема Птолемея ]
Сложность: 5
Классы: 8,9,10,11

Выпуклый четырехугольник $ABCD$ таков, что $\angle B=\angle D$. Докажите, что середина диагонали $BD$ лежит на общей внутренней касательной к окружностям, вписанным в треугольники $ABC$ и $ACD$.
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 113]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .