ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Даны натуральные числа x1, ..., xn. Докажите, что число      можно представить в виде суммы квадратов двух целых чисел.

   Решение

Задачи

Страница: << 79 80 81 82 83 84 85 >> [Всего задач: 1221]      



Задача 35832

Темы:   [ Четность и нечетность ]
[ Подсчет двумя способами ]
Сложность: 3
Классы: 6,7

Имеется таблица 1999×2001. Известно, что произведение чисел в каждой строке отрицательно.
Докажите, что найдётся столбец, произведение чисел в котором тоже отрицательно.

Прислать комментарий     Решение

Задача 60279

Темы:   [ Индукция (прочее) ]
[ Выделение полного квадрата. Суммы квадратов ]
Сложность: 3
Классы: 8,9,10

Даны натуральные числа x1, ..., xn. Докажите, что число      можно представить в виде суммы квадратов двух целых чисел.

Прислать комментарий     Решение

Задача 60634

Темы:   [ Четность и нечетность ]
[ Разбиения на пары и группы; биекции ]
[ Инварианты ]
Сложность: 3
Классы: 7,8

Вдоль улицы стоят шесть деревьев, и на каждом из них сидит по вороне. Раз в час две из них взлетают, и каждая садится на одно из соседних деревьев. Может ли получиться так, что все вороны соберутся на одном дереве?

Прислать комментарий     Решение

Задача 60660

Темы:   [ Делимость чисел. Общие свойства ]
[ Разбиения на пары и группы; биекции ]
[ Арифметика остатков (прочее) ]
[ Разложение на множители ]
Сложность: 3
Классы: 7,8,9

Докажите, что число  11999 + 21999 + ... + 161999  делится на 17.

Прислать комментарий     Решение

Задача 60772

Темы:   [ Обыкновенные дроби ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3
Классы: 8,9

Докажите, что если  n > 2,  то число всех правильных несократимых дробей со знаменателем n чётно.

Прислать комментарий     Решение

Страница: << 79 80 81 82 83 84 85 >> [Всего задач: 1221]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .