ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
Докажите, что площадь треугольника равна его полупериметру, умноженному на радиус вписанной окружности.
Сумма сторон AB и BC треугольника ABC равна 11, угол B равен 60°, радиус вписанной окружности равен
Решите уравнение
sin4x + cos4x = a.
Докажите неравенство: 2n > n. Две окружности пересекаются в точках А и В. Через точку В проведена прямая, пересекающая окружности в точках М и N так, что АВ – биссектриса треугольника МАN. Докажите, что отношение отрезков ВМ и BN равно отношению радиусов окружностей. Рита, Люба и Варя решали задачи. Чтобы дело шло быстрее, они купили конфет и условились, что за каждую решённую задачу девочка, решившая её первой, получает четыре конфеты, решившая второй — две, а решившая последней — одну. Девочки говорят, что каждая из них решила все задачи и получила 20 конфет, причём одновременных решений не было. Они ошибаются. Как вы думаете, почему?
Даны три попарно перпендикулярные прямые. Четвёртая прямая
образует с данными углы α , β , γ соответственно.
Докажите, что
В множестве, состоящем из n элементов, выбрано 2n–1 подмножеств, каждые три из которых имеют общий элемент. Ребус-система. Расшифруйте числовой ребус — систему Две окружности пересекаются в точках A и B. Точка X
лежит на прямой AB, но не на отрезке AB. Докажите,
что длины всех касательных, проведенных из точки X к окружностям,
равны.
Яблоко плавает на воде так, что 1/5 часть яблока находится над водой, а 4/5 – под водой. Под водой яблоко начинает есть рыбка со скоростью 120 г/мин., одновременно над водой яблоко начинает есть птичка со скоростью 60 г/мин. Какая часть яблока достанется рыбке, а какая – птичке? Докажите, что степень точки P относительно
окружности S равна d2 - R2, где R — радиус S, d — расстояние от
точки P до центра S.
Каждая сторона в треугольнике
ABC разделена на 8 равных отрезков. Сколько существует
различных треугольников с вершинами в точках деления (точки A,
B, C не могут быть вершинами треугольников), у которых ни одна
сторона не параллельна ни одной из сторон
треугольника ABC?
|
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 150]
Сколько существует натуральных чисел, меньших тысячи, которые не делятся ни на 5, ни на 7?
В детский сад завезли карточки для обучения чтению: на некоторых написано "МА", на остальных – "НЯ". Каждый ребёнок взял три карточки и стал составлять из них слова. Оказалось, что слово "МАМА" могут сложить из своих карточек 20 детей, слово "НЯНЯ" – 30 детей, а слово "МАНЯ" – 40 детей. У скольких ребят все три карточки одинаковы?
Члены Государственной Думы образовали фракции так,
что для любых двух фракций A и B (не обязательно различных)
В 10 коробках лежат карандаши (пустых коробок нет). Известно, что в разных коробках разное число карандашей, причём в каждой коробке все карандаши разных цветов. Докажите, что из каждой коробки можно выбрать по карандашу так, что все они будут разных цветов.
Каждая сторона в треугольнике
ABC разделена на 8 равных отрезков. Сколько существует
различных треугольников с вершинами в точках деления (точки A,
B, C не могут быть вершинами треугольников), у которых ни одна
сторона не параллельна ни одной из сторон
треугольника ABC?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 150]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке