Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

Докажите, что площадь треугольника равна его полупериметру, умноженному на радиус вписанной окружности.

Вниз   Решение


Сумма сторон AB и BC треугольника ABC равна 11,  угол B равен 60°, радиус вписанной окружности равен  .  Известно также, что сторона AB больше стороны BC. Найдите высоту треугольника, опущенную из вершины A.

ВверхВниз   Решение


Решите уравнение sin4x + cos4x = a.

ВверхВниз   Решение


Докажите неравенство:  2n > n.

ВверхВниз   Решение


Две окружности пересекаются в точках А и В. Через точку В проведена прямая, пересекающая окружности в точках М и N так, что АВ – биссектриса треугольника МАN. Докажите, что отношение отрезков ВМ и BN равно отношению радиусов окружностей.

ВверхВниз   Решение


Рита, Люба и Варя решали задачи. Чтобы дело шло быстрее, они купили конфет и условились, что за каждую решённую задачу девочка, решившая её первой, получает четыре конфеты, решившая второй  — две, а решившая последней  — одну. Девочки говорят, что каждая из них решила все задачи и получила 20 конфет, причём одновременных решений не было. Они ошибаются. Как вы думаете, почему?

ВверхВниз   Решение


Даны три попарно перпендикулярные прямые. Четвёртая прямая образует с данными углы α , β , γ соответственно. Докажите, что

cos 2α + cos 2β + cos 2γ = 1.

ВверхВниз   Решение


В множестве, состоящем из n элементов, выбрано 2n–1 подмножеств, каждые три из которых имеют общий элемент.
Докажите, что все эти подмножества имеют общий элемент.

ВверхВниз   Решение


Ребус-система. Расшифруйте числовой ребус — систему
rebus-sistema
(разным буквам соответствуют разные цифры, а одинаковым — одинаковые).

ВверхВниз   Решение


Две окружности пересекаются в точках A и B. Точка X лежит на прямой AB, но не на отрезке AB. Докажите, что длины всех касательных, проведенных из точки X к окружностям, равны.

ВверхВниз   Решение


Яблоко плавает на воде так, что 1/5 часть яблока находится над водой, а 4/5 – под водой. Под водой яблоко начинает есть рыбка со скоростью 120 г/мин., одновременно над водой яблоко начинает есть птичка со скоростью 60 г/мин. Какая часть яблока достанется рыбке, а какая – птичке?

ВверхВниз   Решение


Докажите, что степень точки P относительно окружности S равна d2 - R2, где R — радиус Sd — расстояние от точки P до центра S.

ВверхВниз   Решение


Каждая сторона в треугольнике ABC разделена на 8 равных отрезков. Сколько существует различных треугольников с вершинами в точках деления (точки A, B, C не могут быть вершинами треугольников), у которых ни одна сторона не параллельна ни одной из сторон треугольника ABC?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 150]      



Задача 76449

Темы:   [ Формула включения-исключения ]
[ Делимость чисел. Общие свойства ]
[ Классическая комбинаторика (прочее) ]
Сложность: 3
Классы: 7,8,9,10

Сколько существует натуральных чисел, меньших тысячи, которые не делятся ни на 5, ни на 7?
Прислать комментарий     Решение


Задача 88137

Темы:   [ Объединение, пересечение и разность множеств ]
[ Классическая комбинаторика (прочее) ]
Сложность: 3
Классы: 5,6,7

В детский сад завезли карточки для обучения чтению: на некоторых написано "МА", на остальных – "НЯ". Каждый ребёнок взял три карточки и стал составлять из них слова. Оказалось, что слово "МАМА" могут сложить из своих карточек 20 детей, слово "НЯНЯ" – 30 детей, а слово "МАНЯ" – 40 детей. У скольких ребят все три карточки одинаковы?

Прислать комментарий     Решение

Задача 109909

Темы:   [ Объединение, пересечение и разность множеств ]
[ Математическая логика (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Члены Государственной Думы образовали фракции так, что для любых двух фракций A и B (не обязательно различных) – тоже фракция (через обозначается множество всех членов Думы, не входящих в C ). Докажите, что для любых двух фракций A и B A B – также фракция.
Прислать комментарий     Решение


Задача 111643

Темы:   [ Теория множеств (прочее) ]
[ Упорядочивание по возрастанию (убыванию) ]
Сложность: 3
Классы: 8,9

В 10 коробках лежат карандаши (пустых коробок нет). Известно, что в разных коробках разное число карандашей, причём в каждой коробке все карандаши разных цветов. Докажите, что из каждой коробки можно выбрать по карандашу так, что все они будут разных цветов.

Прислать комментарий     Решение

Задача 60437

Тема:   [ Формула включения-исключения ]
Сложность: 3
Классы: 8,9,10

Каждая сторона в треугольнике ABC разделена на 8 равных отрезков. Сколько существует различных треугольников с вершинами в точках деления (точки A, B, C не могут быть вершинами треугольников), у которых ни одна сторона не параллельна ни одной из сторон треугольника ABC?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 150]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .