|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Даны две окружности, пересекающиеся в точках $A$, $B$, и точка $O$, лежащая вне их. Циркулем и линейкой постройте такой луч с началом $O$, пересекающий первую окружность в точке $C$, а вторую – в точке $D$, чтобы отношение $OC:OD$ было максимальным. Из выпуклого многогранника с 9 вершинами, одна из которых A, параллельными переносами, переводящими A в каждую из остальных вершин, образуется 8 равных ему многогранников. Докажите, что хотя бы два из этих 8 многогранников пересекаются (по внутренним точкам). Дан трёхгранный угол с вершиной O и точка A на его ребре. По двум другим его рёбрам скользят точки B и C . Найдите геометрическое место точек пересечения медиан треугольников ABC . Сколько существует способов разрезать выпуклый (n+2)-угольник диагоналями на треугольники? |
Страница: << 1 2 3 >> [Всего задач: 12]
Сколько существует способов разрезать выпуклый (n+2)-угольник диагоналями на треугольники?
Выведите формулу для чисел Каталана, воспользовавшись результатом задачи 61519 и равенством
а) Пусть {a1, a2,..., an} – последовательность целых чисел, сумма которых равна 1. Докажите, что ровно у одного из ее циклических сдвигов б) Выведите отсюда равенства:
Пусть C(x) = xC²(x) + 1,
и получите явный вид функции C(x).
Определение чисел Каталана можно найти в справочнике.
При помощи формулы Лежандра (см. задачу 60553) докажите, что число
Страница: << 1 2 3 >> [Всего задач: 12] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|