ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Ссылки по теме:
Статья А. Розенталя "Правило крайнего" Материалы по этой теме: Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи а) В ведро налили 12 литров молока. Пользуясь лишь сосудами в 5 и 7 л, разделите молоко на две равные части. На боковых сторонах AB и BC равнобедренного треугольника ABC взяты соответственно точки M и N так, что BM = CN. Пусть C – одна из точек пересечения окружностей α и β. Касательная в этой точке к α пересекает β в точке B, а касательная в C к β пересекает α в точке A, причём A и B отличны от C, и угол ACB тупой. Прямая AB вторично пересекает α и β в точках N и M соответственно. Докажите, что 2MN < AB. a, b, c – целые числа; a и b отличны от нуля. |
Страница: << 74 75 76 77 78 79 80 >> [Всего задач: 489]
В круге провели несколько (конечное число) различных хорд так, что каждая из них проходит через середину какой-либо другой из проведённых хорд. Докажите, что все эти хорды являются диаметрами круга.
a, b, c – целые числа; a и b отличны от нуля.
На доске написали 100 попарно различных натуральных чисел a1, a2, ..., a100. Затем под каждым числом ai написали число bi, полученное прибавлением к ai наибольшего общего делителя остальных 99 исходных чисел. Какое наименьшее количество попарно различных чисел может быть среди b1, b2, ..., b100?
Изначально на белой клетчатой плоскости конечное число клеток окрашено в чёрный цвет. На плоскости лежит бумажный клетчатый многоугольник $M$, в котором больше одной клетки. Его можно сдвигать, не поворачивая, в любом направлении на любое расстояние, но так, чтобы после сдвига он лежал "по клеткам". Если после очередного сдвига ровно одна клетка у $M$ лежит на белой клетке плоскости, эту белую клетку окрашивают в чёрный цвет и делают следующий сдвиг. Докажите, что существует такая белая клетка, которая никогда не будет окрашена в чёрный цвет, сколько бы раз мы ни сдвигали $M$ по описанным правилам.
Дан клетчатый квадрат $n\times n$, где $n$ > 1. Кроссвордом будем называть любое непустое множество его клеток, а словом – любую горизонтальную и любую вертикальную полоску (клетчатый прямоугольник шириной в одну клетку), целиком состоящую из клеток кроссворда и не содержащуюся ни в какой большей полоске из клеток кроссворда (ни горизонтальной, ни вертикальной). Пусть $x$ – количество слов в кроссворде, $y$ – наименьшее количество слов, которыми можно покрыть кроссворд. Найдите максимум отношения $\frac{x}{y}$ при данном $n$.
Страница: << 74 75 76 77 78 79 80 >> [Всего задач: 489]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке