Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Известно, что среди нескольких монет имеется ровно одна фальшивая (отличается по весу от настоящих). С помощью двух взвешиваний на чашечных весах без гирь определите, легче или тяжелее фальшивая монета настоящей (находить ее не надо), если монет
а) 100;
б) 99;
в) 98?

Вниз   Решение


В квадрате со стороной 1 проведено конечное количество отрезков, параллельных его сторонам. Отрезки могут пересекать друг друга. Сумма длин проведенных отрезков равна 18. Докажите, что среди частей, на которые разбивается квадрат этими отрезками, найдётся такая, площадь которой не меньше 0,01.

ВверхВниз   Решение


Докажите равенство  

ВверхВниз   Решение


Внутри равностороннего треугольника со стороной 1 расположено пять точек. Докажите, что расстояние между некоторыми двумя из них меньше 0, 5.

ВверхВниз   Решение


Вычислите производящие функции следующих последовательностей:
а)     б)  

ВверхВниз   Решение


Даны два набора из n вещественных чисел:  a1, a2, ..., an  и  b1, b2, ..., bn.  Докажите, что если выполняется хотя бы одно из двух условий:
  а) из  ai < aj  следует, что  bi ≤ bj;
  б) из  ai < a < aj,  где  a = 1/n (a1 + a2 + ... + an),  следует, что  bi ≤ bj,
то верно неравенство   n(a1 b1 + a2b2 + ... + anbn) ≥ (a1 + a2 + ... + an)(b1 + b2 + ... + bn).

ВверхВниз   Решение


Какое слагаемое в разложении  (1 + )100  по формуле бинома Ньютона будет наибольшим?

ВверхВниз   Решение


В разложении  (x + y)n  по формуле бинома Ньютона второй член оказался равен 240, третий – 720, а четвёртый – 1080. Найдите x, y и n.

ВверхВниз   Решение


Докажите, что если p – простое число и  1 ≤ k ≤ p – 1,  то    делится на p.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 107]      



Задача 60668

Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Простые числа и их свойства ]
Сложность: 3
Классы: 8,9,10

Докажите, что если p – простое число и  1 ≤ k ≤ p – 1,  то    делится на p.

Прислать комментарий     Решение

Задача 35176

Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Десятичная система счисления ]
[ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 8,9,10

Найдите число нулей, на которое оканчивается число  11100 – 1.

Прислать комментарий     Решение

Задача 30710

Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Целочисленные решетки (прочее) ]
[ Сочетания и размещения ]
Сложность: 3+
Классы: 7,8

План города имеет схему, изображенную на рисунке.

На всех улицах введено одностороннее движение: можно ехать только "вправо" или "вверх".
Сколько есть разных маршрутов, ведущих из точки A в точку B.

Прислать комментарий     Решение

Задача 30711

Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Мощность множества. Взаимно-однозначные отображения ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3+
Классы: 8,9

Докажите, что из n предметов чётное число предметов можно выбрать 2n–1 способами.

Прислать комментарий     Решение

Задача 30712

Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Мощность множества. Взаимно-однозначные отображения ]
Сложность: 3+
Классы: 8,9

Докажите, что  

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 107]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .