|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Выпуклый четырёхугольник разрезан диагоналями на четыре треугольника. Восстановите четырёхугольник по центрам описанных окружностей двух соседних треугольников и центрам вписанных окружностей двух противоположных друг другу треугольников. Сколькими способами можно прочитать в таблице слово
В выпуклом пятиугольнике ABCDE диагонали AD и BD являются биссектрисами углов при вершинах A и B соответственно, ∠C = 115°, ∠E = 65°, а площадь треугольника ABD равна 13. Найдите площадь пятиугольника ABCDE. Все считали, что Дракон был однооким, двуухим, треххвостым, четырехлапым и пятииглым. На самом деле, только четыре из этих определений выстраиваются в определенную закономерность, а одно — лишнее. Какое? Существуют ли такие действительные числа b и c, что каждое из уравнений x² + bx + c = 0 и 2x² + (b + 1)x + c + 1 = 0 имеет по два целых корня? Объясните поведение следующей десятичной дроби и найдите её период: 1/243 = 0,004115226337448... Докажите, что числа Hn = 1 + 1/2 + 1/3 + ... + 1/n при n > 1 не будут целыми. |
Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 127]
Знаменатели двух несократимых дробей равны 600 и 700. Найдите наименьшее возможное значение знаменателя их суммы (в несократимой записи).
Рассмотрим число а) меньше 1/10; б) меньше 1/12; в) больше 1/15.
Что больше:
Докажите, что сумма всех чисел вида 1/mn, где m и n – натуральные числа, 1 < m < n < 1986, не является целым числом.
Докажите, что числа Hn = 1 + 1/2 + 1/3 + ... + 1/n при n > 1 не будут целыми.
Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 127] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|