ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

На боковом ребре пирамиды взяты две точки, делящие ребро на три равные части. Через них проведены плоскости, параллельные основанию. Найдите объём части пирамиды, заключённой между этими плоскостями, если объём всей пирамиды равен 1.

Вниз   Решение


Сколько классов составляют приведённую систему вычетов по модулю m?

Вверх   Решение

Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 79]      



Задача 30365

Темы:   [ Делимость чисел. Общие свойства ]
[ Количество и сумма делителей числа ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3
Классы: 6,7,8

Докажите, что число, имеющее нечётное число делителей, является точным квадратом.

Прислать комментарий     Решение

Задача 60462

Темы:   [ Делимость чисел. Общие свойства ]
[ Количество и сумма делителей числа ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3
Классы: 6,7,8

Когда натуральное число имеет нечётное количество делителей?

Прислать комментарий     Решение

Задача 60761

Темы:   [ Арифметика остатков (прочее) ]
[ Функция Эйлера ]
Сложность: 3
Классы: 9,10,11

Сколько классов составляют приведённую систему вычетов по модулю m?

Прислать комментарий     Решение

Задача 65297

Темы:   [ Дискретное распределение ]
[ Количество и сумма делителей числа ]
Сложность: 3
Классы: 8,9,10,11

На новогоднюю ёлку повесили 100 лампочек в ряд. Затем лампочки стали переключаться по следующему алгоритму: зажглись все, через секунду погасла каждая вторая лампочка, ещё через секунду каждая третья лампочка переключилась: если горела, то погасла и наоборот. Через секунду каждая четвёртая лампочка переключилась, ещё через секунду – каждая пятая и так далее. Через 100 секунд всё закончилось. Найдите вероятность того, что случайно выбранная после этого лампочка горит (лампочки не перегорают и не бьются).

Прислать комментарий     Решение

Задача 67038

Темы:   [ Делимость чисел. Общие свойства ]
[ Количество и сумма делителей числа ]
Сложность: 3
Классы: 8,9

Турнир Городов проводится раз в год. Сейчас год проведения осеннего тура делится на номер турнира:  2021:43 = 47.  Сколько ещё раз человечество сможет наблюдать это удивительное явление?

Прислать комментарий     Решение

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 79]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .