|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи В треугольнике ABC угол A – прямой, угол B равен
30°. В треугольник вписана окружность радиуса С помощью циркуля и линейки через данную точку внутри круга проведите хорду, равную данному отрезку.
Докажите, что середины сторон произвольного четырёхугольника – вершины параллелограмма. p – простое число. Сколько существует способов раскрасить вершины правильного p-угольника в a цветов? (Раскраски, которые можно совместить поворотом, считаются одинаковыми.) Сторона ромба ABCD равна 5. В этот ромб вписана окружность радиуса 2,4.
Дан треугольник ABC. На продолжении стороны AC за точку C
взята точка N, причём AC = 2CN. Точка M находится на стороне BC, причём BM : MC = 1 : 3. Прямая l перпендикулярна одной из медиан треугольника. Серединные перпендикуляры к сторонам этого треугольника пересекают прямую l в трёх точках. Докажите, что одна из них является серединой отрезка, образованного двумя оставшимися. Аналогичные указанному в задаче 60808 признаки делимости существуют и для всех чисел вида 10n ± 1 и их делителей. Например, существует признак делимости на 21, из которого получается и признак делимости на 7. Как устроен признак делимости на 21? |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 45]
Аналогичные указанному в задаче 60808 признаки делимости существуют и для всех чисел вида 10n ± 1 и их делителей. Например, существует признак делимости на 21, из которого получается и признак делимости на 7. Как устроен признак делимости на 21?
Пусть запись числа N в десятичной системе счисления имеет вид
anan–1...a1a0 , ri – остаток от деления числа 10i на m (i = 0, ..., n).
С помощью признака делимости Паскаля (см. задачу 60815) установите признаки делимости на числа 3, 9, 6, 8, 12, 15, 11, 7, 27, 37.
Шестизначное число делится на 37 и имеет хотя бы две различные цифры. Его
первая и четвёртая цифры – не нули.
а) Дано шестизначное число abcdef, причём abc – def делится на 7. Докажите, что и само число делится на 7.
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 45] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|