ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Как правило знаков Декарта применить к оценке числа отрицательных корней многочлена  f(x) = anxn + ... + a1x + a0?

   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 22]      



Задача 109607

Темы:   [ Свойства коэффициентов многочлена ]
[ Симметрия и инволютивные преобразования ]
[ Подсчет двумя способами ]
Сложность: 5
Классы: 9,10,11

Даны непостоянные многочлены P(x) и Q(x), у которых старшие коэффициенты равны 1.
Докажите, что сумма квадратов коэффициентов многочлена P(x)Q(x) не меньше суммы квадратов свободных членов P(x) и Q(x).

Прислать комментарий     Решение

Задача 60986

Темы:   [ Многочлены (прочее) ]
[ Свойства коэффициентов многочлена ]
[ Симметрия и инволютивные преобразования ]
Сложность: 3
Классы: 9,10,11

Как правило знаков Декарта применить к оценке числа отрицательных корней многочлена  f(x) = anxn + ... + a1x + a0?

Прислать комментарий     Решение

Задача 102420

Темы:   [ Подобные треугольники (прочее) ]
[ Вспомогательная окружность ]
[ Симметрия и инволютивные преобразования ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
Сложность: 3+
Классы: 8,9

В остроугольном треугольнике ABC провели высоты AL и BM. Затем провели прямую LM до пересечения с продолжением стороны AB.
Какое наибольшее количество пар подобных треугольников можно насчитать на этом чертеже, если на нём не образовалось ни одной пары равных треугольников?

Прислать комментарий     Решение

Задача 35621

Темы:   [ Вычисление интегралов ]
[ Тождественные преобразования (тригонометрия) ]
[ Симметрия и инволютивные преобразования ]
Сложность: 4-
Классы: 11

Вычислите $\int_0^{\pi /2}(\sin ^2 (\sin x)+ \cos^2(\cos x)) dx$.
Прислать комментарий     Решение


Задача 98373

Темы:   [ Доказательство тождеств. Преобразования выражений ]
[ Целочисленные и целозначные многочлены ]
[ Симметрия и инволютивные преобразования ]
[ Четность и нечетность ]
Сложность: 4-
Классы: 9,10

Перемножаются все выражения вида     (при всевозможных комбинациях знаков).
Докажите, что результат   а) целое число,   б) квадрат целого числа.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 22]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .