ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Пусть характеристическое уравнение ( 11.3) последовательности {an} имеет два различных корня x1 и x2. Докажите, что при фиксированных a0, a1 существует ровно одна пара чисел c1, c2 такая, что

an = c1x1n + c2x2n        (n = 0, 1, 2,...).


Вниз   Решение


Автор: Ботин Д.А.

Пешеход обошёл шесть улиц одного города, пройдя каждую ровно два раза, но не смог обойти их, пройдя каждую лишь раз. Могло ли это быть?

ВверхВниз   Решение


В написанном на доске примере на умножение хулиган Петя исправил две цифры. Получилось  4·5·4·5·4 = 2247.
Восстановите исходный пример.

ВверхВниз   Решение


Замкнутая, возможно, самопересекающаяся ломаная симметрична относительно не лежащей на ней точки $O$. Докажите, что число оборотов ломаной вокруг $O$ нечётно. (Числом оборотов вокруг $O$ называется сумма ориентированных углов $$\angle A_1OA_2+\angle A_2OA_3+\ldots+\angle A_{n-1}OA_n+\angle A_nOA_1,$$ делённая на $2\pi$.)

ВверхВниз   Решение


Дана пирамида АВСD (см. рис.). Известно, что
$ \triangle$ADB = $ \triangle$DBC;
$ \triangle$ABD = $ \triangle$BDC;
$ \triangle$BAD = $ \triangle$ABC.
Найдите площадь поверхности пирамиды (сумму площадей четырех треугольников), если площадь треугольника АВС равна 10 см2.

ВверхВниз   Решение


Дискретная теорема Лиувилля. Пусть f (x, y) — ограниченная гармоническая (определение смотри в задаче 11.28) функция, то есть существует положительная константа M такая, что

$\displaystyle \forall$(x, y) $\displaystyle \in$ $\displaystyle \mathbb {Z}$2    | f (x, y)| $\displaystyle \leqslant$ M.

Докажите, что функция f (x, y) равна константе.

ВверхВниз   Решение


Числа a1, a2, ..., ak таковы, что равенство

$\displaystyle \lim\limits_{n\to\infty}^{}$(xn + a1xn - 1 +...+ akxn - k) = 0

возможно только для тех последовательностей {xn}, для которых $ \lim\limits_{n\to\infty}^{}$xn = 0. Докажите, что все корни многочлена

P($\displaystyle \lambda$) = $\displaystyle \lambda^{k}_{}$ + a1$\displaystyle \lambda^{k-1}_{}$ + a2$\displaystyle \lambda^{k-2}_{}$ +...+ ak

по модулю меньше 1.

ВверхВниз   Решение


В шестиугольнике ABCDEF  AB = BC,  CD = DE,  EF = FA  и  ∠A = ∠C = ∠E.
Докажите, что главные диагонали шестиугольника пересекаются в одной точке.

ВверхВниз   Решение


Докажите, что многочлен  a³(b² – c²) + b³(c² – a²) + c³(a² – b²)  делится на  (b – c)(c – a)(a – b).

Вверх   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 416]      



Задача 116012

Темы:   [ Тождественные преобразования ]
[ Квадратные неравенства и системы неравенств ]
Сложность: 3
Классы: 8,9,10

Автор: Фольклор

Известно, что  5(а – 1) = b + a².  Сравните числа а и b.

Прислать комментарий     Решение

Задача 116014

Темы:   [ Разложение на множители ]
[ Делимость чисел. Общие свойства ]
Сложность: 3
Классы: 8,9,10

Автор: Фольклор

Найдите наименьшее натуральное n, при котором число  А = n³ + 12n² + 15n + 180  делится на 23.

Прислать комментарий     Решение

Задача 116740

Темы:   [ Разложение на множители ]
[ Перебор случаев ]
[ Доказательство от противного ]
Сложность: 3
Классы: 7,8,9

Автор: Фольклор

Для чисел а, b и с, отличных от нуля, выполняется равенство:  a²(b + c – a) = b²(c + a – b) = c²(a + b – c).   Следует ли из этого, что  а = b = c?

Прислать комментарий     Решение

Задача 31307

Тема:   [ Разложение на множители ]
Сложность: 3+
Классы: 6,7,8

Разложить на множители выражение $x^3 + y^3 + z^3 - 3 x y z$.

Прислать комментарий     Решение

Задача 60987

Темы:   [ Разложение на множители ]
[ Теорема Безу. Разложение на множители ]
Сложность: 3+
Классы: 7,8,9,10

Докажите, что многочлен  a³(b² – c²) + b³(c² – a²) + c³(a² – b²)  делится на  (b – c)(c – a)(a – b).

Прислать комментарий     Решение

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 416]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .