ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Пусть a, b – натуральные числа и (a, b) = 1. Докажите, что величина не может быть действительным
числом за исключением случаев |
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 118]
Пусть a, b – натуральные числа и (a, b) = 1. Докажите, что величина не может быть действительным
числом за исключением случаев
Пусть a и b – действительные числа. Определим показательную функцию на множестве комплексных чисел равенством Докажите формулу Эйлера: ea+ib = ea(cos b + i sin b).
Докажите, что числа wk (k = 0, ..., n – 1), являющиеся корнями уравнения wn = z, при любом z ≠ 0 располагаются в вершинах правильного n-угольника.
Докажите, что угол между прямыми, пересекающимися в точке z0 и проходящими через точки z1 и z2, равен аргументу отношения
Докажите, что точка m = 1/3 (a1 + a2 + a3) является точкой пересечения медиан треугольника a1a2a3.
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 118] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|