ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

а) Докажите равенство:   cos φ + ... + cos nφ = ;
б) Вычислите сумму:   sinφ + ... + sin nφ.

   Решение

Задачи

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 210]      



Задача 61103

Темы:   [ Тригонометрия (прочее) ]
[ Рациональные и иррациональные числа ]
[ Целочисленные и целозначные многочлены ]
[ Многочлены Чебышева ]
Сложность: 4
Классы: 10,11

Пользуясь теоремой о рациональных корнях многочлена (см. задачу 61013), докажите, что если  p/q  рационально и  cos (p/q)° ≠ 0, ±½, ±1,  то
cos (p/q)°  – число иррациональное.

Прислать комментарий     Решение

Задача 61104

Темы:   [ Тригонометрия (прочее) ]
[ Тождественные преобразования (тригонометрия) ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 10,11

а) Докажите, что    где a0, ..., an – рациональные числа.

б) Найдите эти представления в явном виде для  n = 2, 3, 4, 5.

в) Выразите sinnx при чётном n в виде    а при нечётном – в виде  

Прислать комментарий     Решение

Задача 61105

Темы:   [ Тригонометрия (прочее) ]
[ Тригонометрическая форма. Формула Муавра ]
Сложность: 4
Классы: 10,11

Известно, что  sin α = 3/5.  Докажите, что  sin 25α  имеет вид  n/525,  где n – целое, не делящееся на 5.

Прислать комментарий     Решение

Задача 61123

Темы:   [ Тождественные преобразования (тригонометрия) ]
[ Комплексные числа помогают решить задачу ]
Сложность: 4
Классы: 9,10,11

а) Докажите равенство:   cos φ + ... + cos nφ = ;
б) Вычислите сумму:   sinφ + ... + sin nφ.

Прислать комментарий     Решение

Задача 61125

Темы:   [ Тождественные преобразования (тригонометрия) ]
[ Комплексные числа помогают решить задачу ]
Сложность: 4
Классы: 10,11

Вычислите суммы:
а)  cos²x + cos²2x + ... + cos²2nx;
б)  sin²x + sin²2x + ... + sin²2nx.

Прислать комментарий     Решение

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 210]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .