ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

а) Докажите равенство  

б) Вычислите сумму  

   Решение

Задачи

Страница: << 116 117 118 119 120 121 122 >> [Всего задач: 1007]      



Задача 78182

Темы:   [ Уравнения в целых числах ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 3+
Классы: 10,11

Доказать, что не существует таких натуральных чисел x, y, z, k, что  xk + yk = zk  при условии  x < k,  y < k.

Прислать комментарий     Решение

Задача 78294

Темы:   [ Делимость чисел. Общие свойства ]
[ Комбинаторика орбит ]
[ Многоугольники (прочее) ]
[ Правильные многоугольники ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 9,10

В окружность вписан неправильный n-угольник, который при повороте окружности около центра на некоторый угол  α ≠ 2π   совмещается сам с собой. Доказать, что n – число составное.

Прислать комментарий     Решение

Задача 60581

 [Числа Фибоначчи и треугольник Паскаля]
Темы:   [ Числа Фибоначчи ]
[ Треугольник Паскаля и бином Ньютона ]
[ Индукция (прочее) ]
Сложность: 3+
Классы: 9,10,11

Докажите равенство:  
(Сумма, стоящая в левой части, может быть интерпретирована, как сумма элементов треугольника Паскаля, стоящих в одной диагонали.)

Прислать комментарий     Решение

Задача 31089

Темы:   [ Ориентированные графы ]
[ Обход графов ]
[ Индукция (прочее) ]
[ Принцип крайнего (прочее) ]
Сложность: 4-
Классы: 6,7,8

В стране каждые два города соединены дорогой с односторонним движением. Доказать, что можно проехать по всем городам, побывав в каждом по одному разу (то есть что в полном ориентированном графе есть гамильтонов путь).

Прислать комментарий     Решение

Задача 61127

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Треугольник Паскаля и бином Ньютона ]
[ Комплексные числа помогают решить задачу ]
Сложность: 4-
Классы: 9,10,11

а) Докажите равенство  

б) Вычислите сумму  

Прислать комментарий     Решение

Страница: << 116 117 118 119 120 121 122 >> [Всего задач: 1007]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .