ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Докажите при помощи комплексных чисел, что композицией двух гомотетий является гомотетия или параллельный перенос: причём в первом случае вектор a параллелен прямой A1A2, а во втором случае центр результирующей гомотетии A лежит на прямой A1A2 и k = k1k2. Здесь обозначает гомотетию с центром в A с коэффициентом k. Решение |
Страница: << 1 2 3 4 5 6 >> [Всего задач: 29]
Докажите равенство: = tg nα.
При каких n многочлен (x + 1)n + xn + 1 делится на:
Докажите при помощи комплексных чисел, что композицией двух гомотетий является гомотетия или параллельный перенос: причём в первом случае вектор a параллелен прямой A1A2, а во втором случае центр результирующей гомотетии A лежит на прямой A1A2 и k = k1k2. Здесь обозначает гомотетию с центром в A с коэффициентом k.
Докажите тождества а) б) в) г)
а) Докажите равенство: cos φ + ... + cos nφ = ;
Страница: << 1 2 3 4 5 6 >> [Всего задач: 29] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|