ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 [Всего задач: 28]      



Задача 107841

Темы:   [ Инварианты ]
[ Производная в точке ]
[ Деление многочленов с остатком. НОД и НОК многочленов ]
[ Комплексные числа помогают решить задачу ]
Сложность: 5+
Классы: 10,11

  На доске написаны три функции:  f1(x) = x + 1/x,   f2(x) = x²,   f3(x) = (x – 1)².  Можно складывать, вычитать и перемножать эти функции (в том числе возводить в квадрат, в куб, ...), умножать их на произвольное число, прибавлять к ним произвольное число, а также проделывать эти операции с полученными выражениями. Получите таким образом функцию 1/x.
  Докажите, что если стереть с доски любую из функций  f1,  f2,  f3, то получить 1/x невозможно.

Прислать комментарий     Решение

Задача 116402

Темы:   [ Произведения и факториалы ]
[ Индукция (прочее) ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Многочлены (прочее) ]
[ Комплексные числа помогают решить задачу ]
[ Линейная и полилинейная алгебра ]
Сложность: 4+
Классы: 10,11

Обозначим через [n]! произведение 1·11·111·...·11...11 – всего n сомножителей, в последнем – n единиц.
Докажите, что  [n + m]!  делится на произведение [n]!·[m]!.

Прислать комментарий     Решение

Задача 85241

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Тождественные преобразования (тригонометрия) ]
[ Правильные многоугольники ]
[ Вспомогательные проекции ]
[ Геометрические интерпретации в алгебре ]
[ Комплексные числа помогают решить задачу ]
Сложность: 4-
Классы: 9,10,11

Докажите следующие равенства:

а)   


б)   


в)   

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 [Всего задач: 28]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .