Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Даны рациональные положительные p, q, причём  1/p + 1/q = 1.  Докажите, что для положительных a и b выполняется неравенство   ab ≤ ap/p + bq/q.

Вниз   Решение


Чётными или нечётными будут сумма и произведение:
  а) двух чётных чисел?
  б) двух нечётных чисел?
  в) чётного и нечётного чисел?

ВверхВниз   Решение


Разложите на простые множители числа 111, 1111, 11111, 111111, 1111111.

ВверхВниз   Решение


Докажите, что если функция f (x) выпукла вверх на отрезке [a;b], то для любых различных точек x1, x2 из [a;b] и любых положительных $ \alpha_{1}^{}$, $ \alpha_{2}^{}$ таких, что $ \alpha_{1}^{}$ + $ \alpha_{2}^{}$ = 1 выполняется неравенство:

f$\displaystyle \left(\vphantom{\alpha_1x_1+\alpha_2x_2}\right.$$\displaystyle \alpha_{1}^{}$x1 + $\displaystyle \alpha_{2}^{}$x2$\displaystyle \left.\vphantom{\alpha_1x_1+\alpha_2x_2}\right)$ > $\displaystyle \alpha_{1}^{}$f (x1) + $\displaystyle \alpha_{2}^{}$f (x2).


ВверхВниз   Решение


Изменятся ли частное и остаток, если делимое и делитель увеличить в 3 раза?

ВверхВниз   Решение


Докажите, что сумма расстояний от любой точки, расположенной внутри правильного n-угольника, до его сторон не зависит от выбора точки.

ВверхВниз   Решение


Как разделить семь яблок между 12 мальчиками, если ни одно яблоко нельзя резать более чем на пять частей?

ВверхВниз   Решение


Петя тратит ⅓ своего времени на игру в футбол, ⅕ – на учебу в школе, ⅙ – на просмотр кинофильмов, 1/70 – на решение олимпиадных задач и ⅓ – на сон. Можно ли так жить?

ВверхВниз   Решение


Докажите, что для любых x1,..., xn $ \in$ [0; $ \pi$] справедливо неравенство:

sin$\displaystyle \left(\vphantom{\dfrac{x_1+\ldots+x_n}{n}}\right.$$\displaystyle {\dfrac{x_1+\ldots+x_n}{n}}$$\displaystyle \left.\vphantom{\dfrac{x_1+\ldots+x_n}{n}}\right)$ $\displaystyle \geqslant$ $\displaystyle {\dfrac{\sin
x_1+\ldots+ \sin x_n}{n}}$.


ВверхВниз   Решение


Можно ли доску размером 5×5 заполнить доминошками размером 1×2?

ВверхВниз   Решение


Правильный n-угольник вписан в единичную окружность. Докажите, что
а) сумма квадратов длин всех сторон и всех диагоналей равна n²;
б) сумма длин всех сторон и всех диагоналей равна  n ctg π/2n;
в) произведение длин всех сторон и всех диагоналей равно  nn/2.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 3]      



Задача 34894

Темы:   [ Правильные многоугольники ]
[ Вычисления. Метрические соотношения в многоугольниках ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 2+
Классы: 8,9,10

Докажите, что сумма расстояний от любой точки, расположенной внутри правильного n-угольника, до его сторон не зависит от выбора точки.

Прислать комментарий     Решение


Задача 61158

Темы:   [ Правильные многоугольники ]
[ Вычисления. Метрические соотношения в многоугольниках ]
[ Момент инерции ]
[ Применение тригонометрических формул (геометрия) ]
Сложность: 4+
Классы: 10,11

Правильный n-угольник вписан в единичную окружность. Докажите, что
а) сумма квадратов длин всех сторон и всех диагоналей равна n²;
б) сумма длин всех сторон и всех диагоналей равна  n ctg π/2n;
в) произведение длин всех сторон и всех диагоналей равно  nn/2.

Прислать комментарий     Решение

Задача 53900

Темы:   [ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Теоремы Чевы и Менелая ]
[ Вычисления. Метрические соотношения в многоугольниках ]
Сложность: 4-
Классы: 8,9

Некоторая прямая пересекает стороны A1A2, A2A3, ..., AnA1 (или их продолжения) многоугольника A1A2...An в точках M1, M2, ..., Mn соответственно.
Докажите, что  

Прислать комментарий     Решение

Страница: 1 [Всего задач: 3]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .