Страница:
<< 1 2 3 4 5
6 >> [Всего задач: 28]
|
|
Сложность: 4 Классы: 9,10,11
|
Пусть известно, что все корни некоторого уравнения x3 + px2 + qx + r = 0 положительны. Какому
дополнительному условию должны удовлетворять его коэффициенты p, q и r для того, чтобы из отрезков, длины которых равны этим корням, можно было составить треугольник?
|
|
Сложность: 4 Классы: 10,11
|
Докажите следующие неравенства непосредственно и при помощи неравенства Мюрхеда (задача 61424):
а) x4y²z + y4x²z + y4z²x + z4y²x + x4z²y + z4x²y ≥ 2(x³y²z² + x²y³z² + x²y²z³);
б) x5 + y5 + z5 ≥ x²y²z + x²yz² + xy²z²;
в) x³ + y³ + z³ + t³ ≥ xyz + xyt + xzt + yxt.
Значения переменных считаются положительными.
Положительные действительные числа a1, ..., an и k таковы, что a1 + ... + an = 3k,
и .
Докажите, что какие-то два из чисел a1, ..., an отличаются больше чем на 1.
|
|
Сложность: 4 Классы: 10,11
|
Каждые два из действительных чисел a1, a2, a3, a4, a5 отличаются не менее чем на 1. Оказалось, что для некоторого действительного k выполнены равенства Докажите, что k² ≥ 25/3.
[Неравенство Мюрхеда]
|
|
Сложность: 5- Классы: 10,11
|
Пусть α = (α1, ..., αn) и β = (β1, ..., βn) – два набора показателей с равной суммой.
Докажите, что, если α ≠ β, то при всех неотрицательных x1, ..., xn выполняется неравенство Tα(x1, ..., xn) ≥ Tβ(x1, ..., xn).
Определение многочленов Tα
смотри в задаче 61417,
определение сравнения для показателей можно найти в справочнике.
Страница:
<< 1 2 3 4 5
6 >> [Всего задач: 28]