ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В треугольнике ABC:  ∠C = 60°,  ∠A = 45°.  Пусть M – середина BC, H – ортоцентр треугольника ABC.
Докажите, что прямая MH проходит через середину дуги AB описанной окружности треугольника ABC.

   Решение

Задачи

Страница: << 115 116 117 118 119 120 121 >> [Всего задач: 603]      



Задача 111598

Темы:   [ Точка Микеля ]
[ Вписанный угол равен половине центрального ]
[ Симметрия помогает решить задачу ]
[ Медиана, проведенная к гипотенузе ]
[ Общая касательная к двум окружностям ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вписанные и описанные окружности ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 4
Классы: 8,9

Точки A', B' и C' – середины сторон соответственно BC, CA и AB треугольника ABC, а BH – его высота.
Докажите, что если описанные окружности треугольников AHC' и CHA' окружности проходят через точку M, то  ∠ABM = ∠CBB'.

Прислать комментарий     Решение

Задача 111809

Темы:   [ Свойства симметрий и осей симметрии ]
[ Вписанные и описанные окружности ]
[ Угол между касательной и хордой ]
[ Две касательные, проведенные из одной точки ]
[ Признаки и свойства параллелограмма ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4
Классы: 9,10

Автор: Скробот Д.

Вписанная в треугольник ABC окружность ω касается сторонAB и AC в точках D и E соответственно. Пусть P – произвольная точка на большей дуге DE окружности ω, F – точка, симметричная точке A относительно прямой DP, M – середина отрезка DE. Докажите, что угол FMP – прямой.

Прислать комментарий     Решение

Задача 116950

Темы:   [ Вписанные и описанные окружности ]
[ Четыре точки, лежащие на одной окружности ]
[ Вспомогательные подобные треугольники ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Симметрия помогает решить задачу ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4
Классы: 8,9,10

Автор: Ивлев Ф.

В окружность Ω вписан остроугольный треугольник ABC, в котором  AB > BC.  Пусть P и Q – середины меньшей и большей дуг AC окружности Ω, соответственно, а M – основание перпендикуляра, опущенного из точки Q на отрезок AB. Докажите, что описанная окружность треугольника BMC делит пополам отрезок BP.

Прислать комментарий     Решение

Задача 64772

Темы:   [ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Две касательные, проведенные из одной точки ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Точка Микеля ]
Сложность: 4+
Классы: 9,10,11

Треугольник ABC  (AB > BC)  вписан в окружность Ω. На сторонах AB и BC выбраны точки M и N соответственно так, что  AM = CN.  Прямые MN и AC пересекаются в точке K. Пусть P – центр вписанной окружности треугольника AMK, а Q – центр вневписанной окружности треугольника CNK, касающейся стороны CN. Докажите, что середина дуги ABC окружности Ω равноудалена от точек P и Q.

Прислать комментарий     Решение

Задача 64336

Темы:   [ Треугольники с углами $60^\circ$ и $120^\circ$ ]
[ Ортоцентр и ортотреугольник ]
[ Вписанные и описанные окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанный угол равен половине центрального ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Признаки и свойства параллелограмма ]
Сложность: 4
Классы: 8,9

В треугольнике ABC:  ∠C = 60°,  ∠A = 45°.  Пусть M – середина BC, H – ортоцентр треугольника ABC.
Докажите, что прямая MH проходит через середину дуги AB описанной окружности треугольника ABC.

Прислать комментарий     Решение

Страница: << 115 116 117 118 119 120 121 >> [Всего задач: 603]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .