ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Ивлев Ф.

Дан неравнобедренный треугольник ABC. Точка O – центр его описанной окружности, а точка K – центр описанной окружности ω треугольника BCO. Высота треугольника ABC, проведенная из точки A, пересекает окружность ω в точке P. Прямая PK пересекает описанную окружность треугольника ABC в точках E и F. Докажите, что один из отрезков EP и FP равен отрезку PA.

   Решение

Задачи

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 207]      



Задача 53850

Темы:   [ Две пары подобных треугольников ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 4-
Классы: 8,9

Точка D лежит на стороне BC треугольника ABC, а точка O расположена на отрезке AD, причём  AO : OD = 9 : 4.  Прямая, проходящая через вершину B и точку O, пересекает сторону AC в точке E, причём  BO : OE = 5 : 6.  Найдите отношение, в котором точка E делит сторону AC.

Прислать комментарий     Решение

Задача 54171

Темы:   [ Средняя линия трапеции ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 4-
Классы: 8,9

Дана трапеция ABCD с основаниями AD и BC. Биссектрисы углов при вершинах A и B пересекаются в точке M, а биссектрисы углов при вершинах C и D – в точке N. Найдите MN, если известно, что  AB = a,  BC = b,  CD = c  и  AD = d.

Прислать комментарий     Решение

Задача 54180

Темы:   [ Необычные построения (прочее) ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Биссектриса угла ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4-
Классы: 8,9

Одним прямолинейным разрезом отрежьте от треугольника трапецию, у которой меньшее основание было бы равно сумме боковых сторон.

Прислать комментарий     Решение

Задача 64458

Темы:   [ Вписанные и описанные окружности ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 8,9

Автор: Ивлев Ф.

Дан неравнобедренный треугольник ABC. Точка O – центр его описанной окружности, а точка K – центр описанной окружности ω треугольника BCO. Высота треугольника ABC, проведенная из точки A, пересекает окружность ω в точке P. Прямая PK пересекает описанную окружность треугольника ABC в точках E и F. Докажите, что один из отрезков EP и FP равен отрезку PA.

Прислать комментарий     Решение

Задача 64967

Темы:   [ Построения (прочее) ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Симметрия помогает решить задачу ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 4-
Классы: 8,9,10

Петя вырезал из бумаги прямоугольник, положил на него такой же прямоугольник и склеил их по периметру. В верхнем прямоугольнике он провёл диагональ, опустил на неё перпендикуляры из двух оставшихся вершин, разрезал верхний прямоугольник по этим линиям и отогнул полученные треугольники во внешнюю сторону, так что вместе с нижним прямоугольником они образовали прямоугольник.
Как по полученному прямоугольнику восстановить исходный с помощью циркуля и линейки?

Прислать комментарий     Решение

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 207]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .