|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Восстановите алфавит племени Мумбо-Юмбо из задачи 2.6. Найдите все возрастающие арифметические прогрессии с конечным числом членов, сумма которых равна 1, а каждый член имеет вид 1/k, где k натуральное. |
Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 127]
Найдите все возрастающие арифметические прогрессии с конечным числом членов, сумма которых равна 1, а каждый член имеет вид 1/k, где k натуральное.
Пусть n > 1 – натуральное число. Выпишем дроби 1/n, 2/n, ..., n–1/n и приведём каждую к несократимому виду; сумму числителей полученных дробей обозначим через f(n). При каких натуральных n > 1 числа f(n) и f(2015n) имеют разную чётность?
На доске выписаны числа 1, ½, ⅓, ..., 1/100. Выбираем из написанных на доске два произвольных числа a и b, стираем их и пишем на доску число
При каких целых n сократимы дроби
Рассмотрим все рациональные числа между нулём и единицей, знаменатели которых не превосходят n, расположенные в порядке возрастания (ряд Фарея). Пусть a/b и c/d – какие-то два соседних числа (дроби несократимы). Доказать, что |bc – ad| = 1.
Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 127] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|