ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Треугольники
>>
Подобные треугольники
>>
Вспомогательные подобные треугольники
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Пусть M – середина хорды AB окружности с центром O. Точка K симметрична M относительно O, P – произвольная точка окружности. Перпендикуляр к AB в точке A и перпендикуляр к PK в точке P пересекаются в точке Q. Точка H – проекция P на AB. Докажите, что прямая QB делит отрезок PH пополам. Решение |
Страница: << 96 97 98 99 100 101 102 >> [Всего задач: 512]
Внутри вписанного четырёхугольника ABCD существует точка K, расстояния от которой до сторон ABCD пропорциональны этим сторонам.
В треугольнике ABC ( AB < BC) точка I – центр вписанной окружности, M – середина стороны AC, N – середина дуги ABC описанной окружности.
Три попарно непересекающиеся окружности ωx, ωy, ωz радиусов rx, ry, rz лежат по одну сторону от прямой t и касаются её в точках X, Y, Z соответственно. Известно, что Y – середина отрезка XZ, rx = rz = r, а ry > r. Пусть p – одна из общих внутренних касательных к окружностям ωx и ωy, а q – одна из общих внутренних касательных к окружностям ωy и ωz. В пересечении прямых p, q, t образовался неравнобедренный треугольник. Докажите, что радиус его вписанной окружности равен r.
Пусть M – середина хорды AB окружности с центром O. Точка K симметрична M относительно O, P – произвольная точка окружности. Перпендикуляр к AB в точке A и перпендикуляр к PK в точке P пересекаются в точке Q. Точка H – проекция P на AB. Докажите, что прямая QB делит отрезок PH пополам.
На медиане CD треугольника ABC отмечена точка E. Окружность S1, проходящая через точку E и касающаяся прямой AB в точке A, пересекает сторону AC в точке M. Окружность S2, проходящая через точку E и касающаяся прямой AB в точке B, пересекает сторону BC в точке N. Докажите, что описанная окружность треугольника CMN касается окружностей S1 и S2.
Страница: << 96 97 98 99 100 101 102 >> [Всего задач: 512] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|