ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В треугольнике АВС проведены высота ВН, медиана ВВ1 и средняя линия А1С1 (А1 лежит на стороне ВС, С1 – на стороне АВ). Прямые А1С1 и ВВ1 пересекаются в точке М, а прямые С1В1 и А1Н – в точке N. Докажите, что прямые MN и BH параллельны.

   Решение

Задачи

Страница: << 63 64 65 66 67 68 69 >> [Всего задач: 829]      



Задача 64710

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Три прямые, пересекающиеся в одной точке ]
[ Конкуррентность высот. Углы между высотами. ]
[ Две пары подобных треугольников ]
Сложность: 3+
Классы: 8,9

В прямоугольнике ABCD точка M – середина стороны CD. Через точку C провели прямую, перпендикулярную прямой BM, а через точку M – прямую, перпендикулярную диагонали BD. Докажите, что два проведённых перпендикуляра пересекаются на прямой AD.

Прислать комментарий     Решение

Задача 64832

Темы:   [ Средняя линия треугольника ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Медиана, проведенная к гипотенузе ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Прямая Эйлера и окружность девяти точек ]
Сложность: 3+
Классы: 8,9,10

В треугольнике АВС проведены высота ВН, медиана ВВ1 и средняя линия А1С1 (А1 лежит на стороне ВС, С1 – на стороне АВ). Прямые А1С1 и ВВ1 пересекаются в точке М, а прямые С1В1 и А1Н – в точке N. Докажите, что прямые MN и BH параллельны.

Прислать комментарий     Решение

Задача 64946

Темы:   [ Треугольники с углами $60^\circ$ и $120^\circ$ ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Отношение, в котором биссектриса делит сторону ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

В треугольнике АВС угол В равен 120°,  АВ = 2ВС.  Серединный перпендикуляр к стороне АВ пересекает АС в точке D. Найдите отношение  AD : DC.

Прислать комментарий     Решение

Задача 64952

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Подобные треугольники (прочее) ]
Сложность: 3+
Классы: 8,9,10

Четырёхугольник ABCD – вписанный. На его диагоналях AC и BD отметили точки K и L соответственно так, что  AK = AB  и  DL = DC.
Докажите, что прямые KL и AD параллельны.

Прислать комментарий     Решение

Задача 65013

Темы:   [ Средние пропорциональные в прямоугольном треугольнике ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства касательной ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Четыре точки, лежащие на одной окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9,10

В прямоугольном треугольнике ABC  CH – высота, проведённая к гипотенузе. Окружность с центром H и радиусом CH пересекает больший катет AC в точке M. Точка B' симметрична точке B относительно H. В точке B' восставлен перпендикуляр к гипотенузе, который пересекает окружность в точке K. Докажите, что:
  а)  B'M || BC;
  б)  AK – касательная к окружности.

Прислать комментарий     Решение

Страница: << 63 64 65 66 67 68 69 >> [Всего задач: 829]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .