ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Внутри прямоугольного треугольника построили две равные окружности так, что первая касается одного из катетов и гипотенузы, вторая касается другого катета и гипотенузы, а ещё эти окружности касаются друг друга. Пусть M и N – точки касания окружностей с гипотенузой. Докажите, что середина отрезка MN лежит на биссектрисе прямого угла треугольника.

   Решение

Задачи

Страница: << 49 50 51 52 53 54 55 >> [Всего задач: 1354]      



Задача 64844

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Неравенство треугольника (прочее) ]
[ Подобные треугольники (прочее) ]
Сложность: 4-
Классы: 8,9,10,11

Даны N прямоугольных треугольников  (N > 1).  У каждого выбрали по одному катету и нашли сумму их длин, затем нашли сумму длин оставшихся катетов и, наконец, нашли сумму длин всех гипотенуз. Оказалось, что три найденных числа являются длинами сторон некоторого прямоугольного треугольника. Докажите, что все исходные треугольники подобны.

Прислать комментарий     Решение

Задача 64850

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Вписанные четырехугольники (прочее) ]
[ Биссектриса угла (ГМТ) ]
[ Поворот помогает решить задачу ]
Сложность: 4-
Классы: 8,9,10

Внутри прямоугольного треугольника построили две равные окружности так, что первая касается одного из катетов и гипотенузы, вторая касается другого катета и гипотенузы, а ещё эти окружности касаются друг друга. Пусть M и N – точки касания окружностей с гипотенузой. Докажите, что середина отрезка MN лежит на биссектрисе прямого угла треугольника.

Прислать комментарий     Решение

Задача 64908

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Симметрия помогает решить задачу ]
[ Композиции симметрий ]
[ Углы между биссектрисами ]
Сложность: 4-
Классы: 8,9

На гипотенузе AC прямоугольного треугольника ABC отметили точку такую C1, что  BC = CC1.  Затем на катете AB отметили такую точку C2, что
AC2 = AC1;  аналогично определяется точка A2. Найдите угол AMC, где M – середина отрезка A2C2.

Прислать комментарий     Решение

Задача 64910

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Вписанные и описанные окружности ]
[ Три прямые, пересекающиеся в одной точке ]
[ Свойства биссектрис, конкуррентность ]
Сложность: 4-
Классы: 8,9

Пусть BM – медиана прямоугольного треугольника ABC  (∠B = 90°).  Окружность, вписанная в треугольник ABM, касается сторон AB, AM в точках A1, A2; аналогично определяются точки C1, C2. Докажите, что прямые A1A2 и C1C2 пересекаются на биссектрисе угла ABC.

Прислать комментарий     Решение

Задача 65034

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Вписанные и описанные окружности ]
[ Свойства симметрий и осей симметрии ]
[ Три прямые, пересекающиеся в одной точке ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4-

Окружность, вписанная в прямоугольный треугольник ABC  (∠B = 90°),  касается сторон AB, BC, CA в точках C1, A1, B1 соответственно. A2, C2 – точки, симметричные точке B1 относительно прямых BC, AB соответственно. Докажите, что прямые A1A2, C1C2 пересекаются на медиане треугольника ABC.

Прислать комментарий     Решение

Страница: << 49 50 51 52 53 54 55 >> [Всего задач: 1354]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .