ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Существует ли выпуклый 1000-угольник, у которого все углы выражаются целыми числами градусов?

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 507]      



Задача 55719

Темы:   [ Правильные многоугольники ]
[ Поворот помогает решить задачу ]
[ Равные треугольники. Признаки равенства (прочее) ]
Сложность: 2+
Классы: 8,9

Докажите, что середины сторон правильного многоугольника образуют правильный многоугольник.

Прислать комментарий     Решение


Задача 64889

Тема:   [ Сумма внутренних и внешних углов многоугольника ]
Сложность: 2+
Классы: 10,11

Существует ли выпуклый 1000-угольник, у которого все углы выражаются целыми числами градусов?

Прислать комментарий     Решение

Задача 65983

Темы:   [ Сумма внутренних и внешних углов многоугольника ]
[ Тригонометрический круг ]
[ Принцип Дирихле (углы и длины) ]
Сложность: 2+
Классы: 9,10,11

В выпуклом четырёхугольнике тангенс одного из углов равен числу m. Могут ли тангенсы каждого из трёх остальных углов также равняться m?

Прислать комментарий     Решение

Задача 76517

Тема:   [ Сумма внутренних и внешних углов многоугольника ]
Сложность: 2+
Классы: 8,9

Какое наибольшее число острых углов может встретиться в выпуклом многоугольнике?

Прислать комментарий     Решение

Задача 116237

Темы:   [ Правильные многоугольники ]
[ Поворот (прочее) ]
[ Поворот помогает решить задачу ]
Сложность: 2+
Классы: 8,9

Докажите, что выпуклый n-угольник является правильным тогда и только тогда, когда он переходит в себя при повороте на угол 360°/n  вокруг некоторой точки.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 507]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .