ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В треугольнике ABC проведён серединный перпендикуляр к стороне AB до пересечения с другой стороной в некоторой точке C'. Аналогично построены точки A' и B'. Для каких исходных треугольников треугольник A'B'C' будет равносторонним?

   Решение

Задачи

Страница: << 111 112 113 114 115 116 117 >> [Всего задач: 603]      



Задача 54179

Темы:   [ Трапеции (прочее) ]
[ Три прямые, пересекающиеся в одной точке ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Средняя линия трапеции ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

Одна из боковых сторон трапеции равна сумме оснований.
Докажите, что биссектрисы углов при этой стороне пересекаются на другой боковой стороне.

Прислать комментарий     Решение

Задача 54332

Темы:   [ Вспомогательная окружность ]
[ Теорема Пифагора (прямая и обратная) ]
[ Площадь трапеции ]
[ Вписанный угол равен половине центрального ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

В трапеции ABCD  AD || BC)  угол ADB в два раза меньше угла ACB. Известно, что  BC = AC = 5  и  AD = 6.  Найдите площадь трапеции.

Прислать комментарий     Решение

Задача 64751

Темы:   [ Пятиугольники ]
[ Примеры и контрпримеры. Конструкции ]
[ Правильный (равносторонний) треугольник ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Правильные многоугольники ]
Сложность: 3+

Существует ли выпуклый пятиугольник, в котором каждая диагональ равна какой-то стороне?

Прислать комментарий     Решение

Задача 65031

Темы:   [ Правильный (равносторонний) треугольник ]
[ Треугольники с углами $60^\circ$ и $120^\circ$ ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC проведён серединный перпендикуляр к стороне AB до пересечения с другой стороной в некоторой точке C'. Аналогично построены точки A' и B'. Для каких исходных треугольников треугольник A'B'C' будет равносторонним?

Прислать комментарий     Решение

Задача 66691

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Средняя линия треугольника ]
[ Медиана, проведенная к гипотенузе ]
[ Центр масс ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9,10,11

На гипотенузе $AB$ прямоугольного треугольника $ABC$ отметили точку $K$, а на катете $AC$ – точку $L$ так, что  $AK = AC,  BK = LC$.  Отрезки $BL$ и $CK$ пересекаются в точке $M$. Докажите, что треугольник $CLM$ равнобедренный.

Прислать комментарий     Решение

Страница: << 111 112 113 114 115 116 117 >> [Всего задач: 603]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .