ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Найдите все натуральные  n > 2,  для которых многочлен  xn + x² + 1  делится на многочлен  x² + x + 1.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 29]      



Задача 65183

Темы:   [ Деление многочленов с остатком. НОД и НОК многочленов ]
[ Разложение на множители ]
[ Комплексные числа помогают решить задачу ]
Сложность: 3+
Классы: 9,10,11

Найдите все натуральные  n > 2,  для которых многочлен  xn + x² + 1  делится на многочлен  x² + x + 1.

Прислать комментарий     Решение

Задача 61097

Темы:   [ Теорема Безу. Разложение на множители ]
[ Тригонометрическая форма. Формула Муавра ]
[ Комплексные числа помогают решить задачу ]
Сложность: 4-
Классы: 10,11

а) Докажите, что многочлен  P(x) = (cos φ + x sin φ)n – cos nφ – x sin nφ  делится на  x2 + 1.
б) Докажите, что многочлен  Q(x) = xnsin φ – ρn–1xsin nφ + ρnsin(n – 1)φ  делится на  x2 – 2ρxcos φ + ρ2.

Прислать комментарий     Решение

Задача 61127

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Треугольник Паскаля и бином Ньютона ]
[ Комплексные числа помогают решить задачу ]
Сложность: 4-
Классы: 9,10,11

а) Докажите равенство  

б) Вычислите сумму  

Прислать комментарий     Решение

Задача 61129

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Треугольник Паскаля и бином Ньютона ]
[ Комплексные числа помогают решить задачу ]
Сложность: 4-
Классы: 10,11

Докажите равенство:  

Прислать комментарий     Решение

Задача 61128

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Треугольник Паскаля и бином Ньютона ]
[ Комплексные числа помогают решить задачу ]
Сложность: 4
Классы: 9,10,11

а) Докажите равенство  

б) Вычислите суммы  

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 >> [Всего задач: 29]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .