ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Циркулем и линейкой разбейте данный треугольник на два меньших треугольника с одинаковой суммой квадратов сторон. Высоты остроугольного треугольника ABC, проведённые из вершин B и C, равны 7 и 9, а медиана AM равна 8. Точки P и Q симметричны точке M относительно сторон AC и AB соответственно. Найдите периметр четырёхугольника APMQ.
Даны две параллельные прямые и секущая. С помощью циркуля и линейки постройте окружность, касающуюся всех трёх прямых.
В угол величины 2
Сфера, вписанная в пирамиду SABC, касается граней SAB, SBC, SCA в точках D, E, F соответственно. Докажите, что любое натуральное число, десятичная запись которого состоит из 3n одинаковых цифр, делится на 37.
Две прямые проходят через точку M и касаются окружности в
точках A и B. Проведя радиус OB, продолжают его за точку B на
расстояние BC = OB. Докажите, что
Ваня задумал два положительных числа x и y. Он записал числа x + y, x – y, xy и x/y и показал их Пете, но не сказал, какое число какой операцией получено. Докажите, что Петя сможет однозначно восстановить x и y.
В треугольнике KMN проведены высота NA, биссектриса NB и медиана NC, которые делят угол KNM на четыре равные части. Найдите длины высоты NA, биссектрисы NB и медианы NC, если радиус описанной около треугольника KMN окружности равен R.
В параллелограмме ABCD точка E – середина AD. Точка F – основание перпендикуляра, опущенного из B на прямую CE.
Две окружности радиусов R и r (R > r) касаются внешне в точке C. К ним проведена общая внешняя касательная AB, где A и B — точки касания. Найдите стороны треугольника ABC.
а) Натуральные числа x, x² и x³ начинаются с одной и той же цифры. Обязательно ли эта цифра – единица? Действительные числа a, b, c, d, по модулю большие единицы,
удовлетворяют соотношению abc + abd + acd + bcd + a + b + c + d = 0. |
Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 258]
В вершинах куба расставили числа 1², 2², ..., 8² (в каждую из вершин – по одному числу). Для каждого ребра посчитали произведение чисел в его концах. Найдите наибольшую возможную сумму всех этих произведений.
Действительные числа a, b, c, d, по модулю большие единицы,
удовлетворяют соотношению abc + abd + acd + bcd + a + b + c + d = 0.
Докажите, что если
В квадрате со стороной 1 проведено конечное количество отрезков, параллельных его сторонам. Отрезки могут пересекать друг друга. Сумма длин проведенных отрезков равна 18. Докажите, что среди частей, на которые разбивается квадрат этими отрезками, найдётся такая, площадь которой не меньше 0,01.
Пусть a, b, c – положительные числа, сумма которых равна 1.
Докажите неравенство:
Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 258]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке