Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Две окружности касаются в точке K. Через точку K проведены две прямые, пересекающие первую окружность в точках A и B, вторую — в точках C и D. Докажите, что AB| CD.

Вниз   Решение


Окружность покрыта несколькими дугами. Эти дуги могут налегать друг на друга, но ни одна из них не покрывает окружность целиком. Доказать, что всегда можно выбрать несколько из этих дуг так, чтобы они тоже покрывали всю окружность и составляли в сумме не более 720o .

ВверхВниз   Решение


Основание пирамиды – равнобедренный треугольник с углом ϕ при вершине. Все боковые рёбра пирамиды равны a . Найдите объём пирамиды, если радиус окружности, вписанной в треугольник основания, равен r .

ВверхВниз   Решение


Точки A и B взяты на графике функции y=1/x, x>0. Из них опущены перпендикуляры на ось абсцисс, основания перпендикуляров - HA и HB; O - начало координат. Докажите, что площадь фигуры, ограниченной прямыми OA, OB и дугой AB, равна площади фигуры, ограниченной прямыми AHA, BHB, осью абсцисс и дугой AB.

ВверхВниз   Решение


На доске написаны в порядке возрастания два натуральных числа x и y  (x ≤ y).  Петя записывает на бумажке x² (квадрат первого числа), а затем заменяет числа на доске числами x и  y – x,  записывая их в порядке возрастания. С новыми числами на доске он проделывает ту же операцию, и так далее, до тех пор пока одно из чисел на доске не станет нулём. Чему будет в этот момент равна сумма чисел на Петиной бумажке?

ВверхВниз   Решение


Автор: Храбров А.

Последовательность натуральных чисел an строится следующим образом: a0 – некоторое натуральное число;  an+1 = ⅕ an,  если an делится на 5;
an+1 = [ an],  если an не делится на 5. Докажите, что начиная с некоторого члена последовательность an возрастает.

ВверхВниз   Решение


Докажите, что через две параллельные прямые можно провести единственную плоскость.

ВверхВниз   Решение


Двенадцать стульев стоят в ряд. Иногда на один из свободных стульев садится человек. При этом ровно один из его соседей (если они были) встаёт и уходит. Какое наибольшее количество человек могут одновременно оказаться сидящими, если вначале все стулья были пустыми?

Вверх   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 316]      



Задача 65424

Темы:   [ Процессы и операции ]
[ Инварианты ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3+
Классы: 8,9,10,11

На доске записаны числа 20 и 100. Разрешается дописать на доску произведение любых двух имеющихся на ней чисел. Можно ли такими операциями когда-нибудь получить на доске число 50...0 (2015 нулей)?

Прислать комментарий     Решение

Задача 65507

Темы:   [ Процессы и операции ]
[ Теория алгоритмов (прочее) ]
[ Оценка + пример ]
Сложность: 3+
Классы: 7,8,9

Двенадцать стульев стоят в ряд. Иногда на один из свободных стульев садится человек. При этом ровно один из его соседей (если они были) встаёт и уходит. Какое наибольшее количество человек могут одновременно оказаться сидящими, если вначале все стулья были пустыми?

Прислать комментарий     Решение

Задача 65616

Темы:   [ Процессы и операции ]
[ Простые числа и их свойства ]
[ Десятичная система счисления ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 9,10,11

Изначально на экране компьютера – какое-то простое число. Каждую секунду число на экране заменяется на число, полученное из предыдущего прибавлением его последней цифры, увеличенной на 1. Через какое наибольшее время на экране возникнет составное число?

Прислать комментарий     Решение

Задача 65662

Темы:   [ Процессы и операции ]
[ Уравнения в целых числах ]
Сложность: 3+
Классы: 7,8,9

Шагреневая кожа исполняет желания, но после каждого желания её площадь уменьшается: либо на 1 дм² в обычном случае, либо в два раза – если желание было заветное. Десять желаний уменьшили площадь кожи втрое, следующие несколько – еще всемеро, а еще через несколько желаний кожа вообще пропала. Какова первоначальная площадь кожи?

Прислать комментарий     Решение

Задача 65741

Темы:   [ Процессы и операции ]
[ Полуинварианты ]
Сложность: 3+
Классы: 8,9

Автор: Жуков Г.

У менялы на базаре есть много ковров. Он согласен взамен ковра размера a×b дать либо ковёр размера 1/a×1/b, либо два ковра размеров c×b и  a/c×b  (при каждом таком обмене число c клиент может выбрать сам). Путешественник рассказал, что изначально у него был один ковёр, стороны которого превосходили 1, а после нескольких таких обменов у него оказался набор ковров, у каждого из которых одна сторона длиннее 1, а другая – короче 1. Не обманывает ли он? (По просьбе клиента меняла готов ковёр размера a×b считать ковром размера b×a.)

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 316]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .