ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Пусть A и B – два прямоугольника. Из прямоугольников, равных A, сложили прямоугольник, подобный B.
Докажите, что из прямоугольников, равных B, можно сложить прямоугольник, подобный A.

   Решение

Задачи

Страница: << 45 46 47 48 49 50 51 >> [Всего задач: 416]      



Задача 65561

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Рациональные и иррациональные числа ]
Сложность: 4+
Классы: 8,9,10,11

Пусть A и B – два прямоугольника. Из прямоугольников, равных A, сложили прямоугольник, подобный B.
Докажите, что из прямоугольников, равных B, можно сложить прямоугольник, подобный A.
Прислать комментарий     Решение


Задача 65857

Темы:   [ Процессы и операции ]
[ Монотонность, ограниченность ]
Сложность: 4+
Классы: 9,10,11

На окружности сидят 12 кузнечиков в различных точках. Эти точки делят окружность на 12 дуг. Отметим 12 середин дуг. По сигналу кузнечики одновременно прыгают, каждый – в ближайшую по часовой стрелке отмеченную точку. Снова образуются 12 дуг, прыжки в середины дуг повторяются, и т. д. Может ли хотя бы один кузнечик вернуться в свою исходную точку после того, как им сделано   a) 12 прыжков;   б) 13 прыжков?

Прислать комментарий     Решение

Задача 66075

Темы:   [ Теория алгоритмов (прочее) ]
[ Целая и дробная части. Принцип Архимеда ]
[ Принцип Дирихле (углы и длины) ]
Сложность: 4+
Классы: 8,9,10

  Преподаватель выставил оценки по шкале от 0 до 100. В учебной части могут менять верхнюю границу шкалы на любое другое натуральное число, пересчитывая оценки пропорционально и округляя до целых. Нецелое число при округлении меняется до ближайшего целого; если дробная часть равна 0,5, направление округления учебная часть может выбирать любое, отдельно для каждой оценки. (Например, оценка 37 по шкале 100 после пересчета в шкалу 40 перейдёт в  37·40/100 = 14,8  и будет округлена до 15.)
  Студенты Петя и Вася получили оценки a и b, отличные от 0 и 100. Докажите, что учебная часть может сделать несколько пересчётов так, чтобы у Пети стала оценка b, а у Васи – оценка a (пересчитываются одновременно обе оценки).

Прислать комментарий     Решение

Задача 88296

Темы:   [ Классические неравенства ]
[ Ряды с неотрицательными членами ]
Сложность: 4+
Классы: 7,8,9

Найдется ли такое n, при котором   ?   А больше 1000?

Прислать комментарий     Решение

Задача 97832

Темы:   [ Непрерывные функции (общие свойства) ]
[ Монотонность, ограниченность ]
[ Неравенство Коши ]
Сложность: 4+
Классы: 10,11

Автор: Анджанс А.

F(x) – возрастающая функция, определённая на отрезке  [0, 1].  Известно, что область её значений принадлежит отрезку  [0, 1].  Доказать, что, каково бы ни было натуральное n, график функции можно покрыть N прямоугольниками, стороны которых параллельны осям координат так, что площадь каждого равна 1/n². (В прямоугольник мы включаем его внутренние точки и точки его границы.)

Прислать комментарий     Решение

Страница: << 45 46 47 48 49 50 51 >> [Всего задач: 416]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .