ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Дано простое число p. Назовём треугольник разрешённым, если все его углы имеют вид m/p·180°, где m целое. Одинаковыми будем считать разрешённые треугольники с одинаковым набором углов (то есть подобные). Вначале дан один разрешённый треугольник. Каждую минуту один из имеющихся треугольников разрезают на два разрешённых так, чтобы после разрезания все имеющиеся треугольники были разными. Спустя некоторое время оказалось, что ни один из треугольников так разрезать нельзя. Докажите, что к этому моменту среди имеющихся частей есть все возможные разрешённые треугольники. Решение |
Страница: << 117 118 119 120 121 122 123 >> [Всего задач: 1221]
Дано простое число p. Назовём треугольник разрешённым, если все его углы имеют вид m/p·180°, где m целое. Одинаковыми будем считать разрешённые треугольники с одинаковым набором углов (то есть подобные). Вначале дан один разрешённый треугольник. Каждую минуту один из имеющихся треугольников разрезают на два разрешённых так, чтобы после разрезания все имеющиеся треугольники были разными. Спустя некоторое время оказалось, что ни один из треугольников так разрезать нельзя. Докажите, что к этому моменту среди имеющихся частей есть все возможные разрешённые треугольники.
В магазине продают коробки конфет. Среди них есть не менее пяти коробок разной цены (никакие две из них не стоят одинаково). Какие бы две коробки ни купил Вася, Петя всегда сможет также купить две коробки, потратив столько же денег. Какое наименьшее количество коробок конфет должно быть в продаже?
Имеются чашечные весы, которые находятся в равновесии, если разность масс на их чашах не превосходит 1 г, а также гири массами ln 3, ln 4, ..., ln 79 г.
Германн и Чекалинский разложили на столе 13 различных карт. Каждая карта может лежать в одном из двух положений: рубашкой вверх или рубашкой вниз. Игроки должны по очереди переворачивать по одной карте. Проигрывает тот игрок, после хода которого повторится какая-то из предыдущих ситуаций (включая изначальную). Первый ход сделал Чекалинский. Кто сможет выиграть независимо от того, как будет играть соперник?
Среди 49 школьников каждый знаком не менее чем с 25 другими.
Страница: << 117 118 119 120 121 122 123 >> [Всего задач: 1221] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|