Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 18 задач
Версия для печати
Убрать все задачи

Докажите, что при гомотетии окружность переходит в окружность.

Вниз   Решение


Можно ли разложить на множители с целыми коэффициентами многочлен  x4 + x3 + x2 + x + 12?

ВверхВниз   Решение


Докажите, что если фигура имеет две перпендикулярные оси симметрии, то она имеет центр симметрии.

ВверхВниз   Решение


Докажите, что окружность при осевой симметрии переходит в окружность.

ВверхВниз   Решение


Дан квадрат ABCD, M и N – середины сторон BC и AD. На продолжении диагонали AC за точку A взяли точку K. Отрезок KM пересекает сторону AB
в точке L. Докажите, что углы KNA и LNA равны.

ВверхВниз   Решение


Докажите, что точки, симметричные произвольной точке относительно середин сторон квадрата, являются вершинами некоторого квадрата.

ВверхВниз   Решение


а) Дано шесть натуральных чисел. Все они различны и дают в сумме 22. Найти эти числа и доказать, что других нет.

б) Тот же вопрос про 100 чисел, дающих в сумме 5051.

ВверхВниз   Решение


Окружность, построенная на основании BC трапеции ABCD как на диаметре, проходит через середины диагоналей AC и BD трапеции и касается основания AD. Найдите углы трапеции.

ВверхВниз   Решение


В стране каждые два города соединены дорогой с односторонним движением.
Доказать, что существует город, из которого можно проехать в любой другой не более чем по двум дорогам.

ВверхВниз   Решение


Десять человек сидят за круглым столом. Сумма в десять долларов должна быть распределена среди них так, чтобы каждый получил половину от той суммы, которую два его соседа получили вместе. Однозначно ли это правило задает распределение денег?

ВверхВниз   Решение


Десяти ребятам положили в тарелки по 100 макаронин. Есть ребята не хотели и стали играть. Одним действием кто-то из детей перекладывает из своей тарелки по одной макаронине всем другим детям. После какого наименьшего количества действий у всех в тарелках может оказаться разное количество макаронин?

ВверхВниз   Решение


Основание равнобедренного треугольника равно a, угол при вершине равен α. Найдите биссектрису, проведённую к боковой стороне.

ВверхВниз   Решение


Сто положительных чисел записаны по кругу. Квадрат каждого числа равен сумме двух чисел, стоящих за этим числом по часовой стрелке.
Какие числа могут быть записаны?

ВверхВниз   Решение


Сколько существует различных пирамид, все рёбра которых равны 1?

ВверхВниз   Решение


Расставьте по кругу шесть различных чисел так, чтобы каждое из них равнялось произведению двух соседних.

ВверхВниз   Решение


Диагонали трапеции взаимно перпендикулярны. Докажите, что произведение длин оснований трапеции равно сумме произведений длин отрезков одной диагонали и длин отрезков другой диагонали, на которые они делятся точкой пересечения.

ВверхВниз   Решение


Квадратная доска разделена семью прямыми, параллельными одной стороне доски, и семью прямыми, параллельными другой стороне доски, на 64 прямоугольные клетки, которые покрашены в белый и чёрный цвета в шахматном порядке. Расстояния между соседними прямыми не обязательно одинаковы, поэтому клетки могут быть разных размеров. Известно, однако, что отношение площади каждой белой клетки к площади любой чёрной клетки не больше 2. Найдите наибольшее возможное отношение суммарной площади белых клеток к суммарной площади чёрных.

ВверхВниз   Решение


Изначально на экране компьютера – какое-то простое число. Каждую секунду число на экране заменяется на число, полученное из предыдущего прибавлением его последней цифры, увеличенной на 1. Через какое наибольшее время на экране возникнет составное число?

Вверх   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 316]      



Задача 65424

Темы:   [ Процессы и операции ]
[ Инварианты ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3+
Классы: 8,9,10,11

На доске записаны числа 20 и 100. Разрешается дописать на доску произведение любых двух имеющихся на ней чисел. Можно ли такими операциями когда-нибудь получить на доске число 50...0 (2015 нулей)?

Прислать комментарий     Решение

Задача 65507

Темы:   [ Процессы и операции ]
[ Теория алгоритмов (прочее) ]
[ Оценка + пример ]
Сложность: 3+
Классы: 7,8,9

Двенадцать стульев стоят в ряд. Иногда на один из свободных стульев садится человек. При этом ровно один из его соседей (если они были) встаёт и уходит. Какое наибольшее количество человек могут одновременно оказаться сидящими, если вначале все стулья были пустыми?

Прислать комментарий     Решение

Задача 65616

Темы:   [ Процессы и операции ]
[ Простые числа и их свойства ]
[ Десятичная система счисления ]
[ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 9,10,11

Изначально на экране компьютера – какое-то простое число. Каждую секунду число на экране заменяется на число, полученное из предыдущего прибавлением его последней цифры, увеличенной на 1. Через какое наибольшее время на экране возникнет составное число?

Прислать комментарий     Решение

Задача 65662

Темы:   [ Процессы и операции ]
[ Уравнения в целых числах ]
Сложность: 3+
Классы: 7,8,9

Шагреневая кожа исполняет желания, но после каждого желания её площадь уменьшается: либо на 1 дм² в обычном случае, либо в два раза – если желание было заветное. Десять желаний уменьшили площадь кожи втрое, следующие несколько – еще всемеро, а еще через несколько желаний кожа вообще пропала. Какова первоначальная площадь кожи?

Прислать комментарий     Решение

Задача 65741

Темы:   [ Процессы и операции ]
[ Полуинварианты ]
Сложность: 3+
Классы: 8,9

Автор: Жуков Г.

У менялы на базаре есть много ковров. Он согласен взамен ковра размера a×b дать либо ковёр размера 1/a×1/b, либо два ковра размеров c×b и  a/c×b  (при каждом таком обмене число c клиент может выбрать сам). Путешественник рассказал, что изначально у него был один ковёр, стороны которого превосходили 1, а после нескольких таких обменов у него оказался набор ковров, у каждого из которых одна сторона длиннее 1, а другая – короче 1. Не обманывает ли он? (По просьбе клиента меняла готов ковёр размера a×b считать ковром размера b×a.)

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 316]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .