ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

С левого берега реки на правый с помощью одной лодки переправились N туземцев, каждый раз плавая направо вдвоем, а обратно – в одиночку. Изначально каждый знал по одному анекдоту, каждый – свой. На берегах они анекдотов не рассказывали, но в лодке каждый рассказывал попутчику все известные ему на данный момент анекдоты. Для каждого натурального k найдите наименьшее возможное значение N, при котором могло случиться так, что в конце каждый туземец знал, кроме своего, еще не менее чем k анекдотов.

   Решение

Задачи

Страница: << 155 156 157 158 159 160 161 >> [Всего задач: 1308]      



Задача 65685

Темы:   [ Кооперативные алгоритмы ]
[ Принцип крайнего (прочее) ]
[ Индукция (прочее) ]
Сложность: 4+
Классы: 9,10,11

В английском клубе вечером собрались n его членов  (n ≥ 3).  По традициям клуба каждый принес с собой сок того вида, который он предпочитает, в том количестве, которое он планирует выпить в течение вечера. Согласно правилам клуба, в любой момент любые три его члена могут присесть за столик и выпить сока (каждый – своего) в любом количестве, но обязательно все трое поровну. Докажите, что для того, чтобы все члены могли в течение вечера полностью выпить принесенный с собой сок, необходимо и достаточно, чтобы доля сока, принесенного каждым членом клуба, не превосходила одной трети от общего количества.

Прислать комментарий     Решение

Задача 65687

Темы:   [ Теория алгоритмов (прочее) ]
[ Индукция (прочее) ]
[ Полуинварианты ]
[ Оценка + пример ]
Сложность: 4+
Классы: 10,11

С левого берега реки на правый с помощью одной лодки переправились N туземцев, каждый раз плавая направо вдвоем, а обратно – в одиночку. Изначально каждый знал по одному анекдоту, каждый – свой. На берегах они анекдотов не рассказывали, но в лодке каждый рассказывал попутчику все известные ему на данный момент анекдоты. Для каждого натурального k найдите наименьшее возможное значение N, при котором могло случиться так, что в конце каждый туземец знал, кроме своего, еще не менее чем k анекдотов.

Прислать комментарий     Решение

Задача 66075

Темы:   [ Теория алгоритмов (прочее) ]
[ Целая и дробная части. Принцип Архимеда ]
[ Принцип Дирихле (углы и длины) ]
Сложность: 4+
Классы: 8,9,10

  Преподаватель выставил оценки по шкале от 0 до 100. В учебной части могут менять верхнюю границу шкалы на любое другое натуральное число, пересчитывая оценки пропорционально и округляя до целых. Нецелое число при округлении меняется до ближайшего целого; если дробная часть равна 0,5, направление округления учебная часть может выбирать любое, отдельно для каждой оценки. (Например, оценка 37 по шкале 100 после пересчета в шкалу 40 перейдёт в  37·40/100 = 14,8  и будет округлена до 15.)
  Студенты Петя и Вася получили оценки a и b, отличные от 0 и 100. Докажите, что учебная часть может сделать несколько пересчётов так, чтобы у Пети стала оценка b, а у Васи – оценка a (пересчитываются одновременно обе оценки).

Прислать комментарий     Решение

Задача 66271

Темы:   [ Теория игр (прочее) ]
[ Многоугольники (прочее) ]
[ Индукция в геометрии ]
[ Принцип Дирихле (прочее) ]
[ Оценка + пример ]
Сложность: 4+
Классы: 8,9,10,11

Автор: Белухов Н.

Дьявол предлагает Человеку сыграть в следующую игру. Сначала Человек платит некоторую сумму s и называет 97 троек  {i, j, k},  где i, j, k – натуральные числа, не превосходящие 100. Затем Дьявол рисует выпуклый 100-угольник A1A2...A100 с площадью, равной 100, и выплачивает Человеку выигрыш, равный сумме площадей 97 треугольников AiAjAk. При каком наибольшем s Человеку выгодно согласиться?

Прислать комментарий     Решение

Задача 67282

Темы:   [ Теория алгоритмов (прочее) ]
[ Шахматная раскраска ]
Сложность: 4+
Классы: 6,7,8

Решил шах проверить придворного мудреца. «Вот тебе шесть шкатулок, — сказал шах, — с надписями 1, 2, 3, 4, 5, 6 на крышках. В каждой шкатулке золотая монета, которая весит ровно столько граммов, сколько написано. Ты расставляешь шкатулки как угодно в клетках прямоугольника 2×3. Потом я втайне от тебя меняю местами монеты в каких-то двух шкатулках, стоящих в соседних по стороне клетках (или ничего не меняю). Затем ты укажешь на несколько шкатулок, а я назову тебе общий вес монет в них. Если после этого правильно определишь, какие монеты я переложил, останешься при дворе. А не сможешь — прогоню вон!»

Как может действовать мудрец, чтобы выдержать испытание?
Прислать комментарий     Решение


Страница: << 155 156 157 158 159 160 161 >> [Всего задач: 1308]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .