ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи С левого берега реки на правый с помощью одной лодки переправились N туземцев, каждый раз плавая направо вдвоем, а обратно – в одиночку. Изначально каждый знал по одному анекдоту, каждый – свой. На берегах они анекдотов не рассказывали, но в лодке каждый рассказывал попутчику все известные ему на данный момент анекдоты. Для каждого натурального k найдите наименьшее возможное значение N, при котором могло случиться так, что в конце каждый туземец знал, кроме своего, еще не менее чем k анекдотов. Решение |
Страница: << 155 156 157 158 159 160 161 >> [Всего задач: 1308]
В английском клубе вечером собрались n его членов (n ≥ 3). По традициям клуба каждый принес с собой сок того вида, который он предпочитает, в том количестве, которое он планирует выпить в течение вечера. Согласно правилам клуба, в любой момент любые три его члена могут присесть за столик и выпить сока (каждый – своего) в любом количестве, но обязательно все трое поровну. Докажите, что для того, чтобы все члены могли в течение вечера полностью выпить принесенный с собой сок, необходимо и достаточно, чтобы доля сока, принесенного каждым членом клуба, не превосходила одной трети от общего количества.
С левого берега реки на правый с помощью одной лодки переправились N туземцев, каждый раз плавая направо вдвоем, а обратно – в одиночку. Изначально каждый знал по одному анекдоту, каждый – свой. На берегах они анекдотов не рассказывали, но в лодке каждый рассказывал попутчику все известные ему на данный момент анекдоты. Для каждого натурального k найдите наименьшее возможное значение N, при котором могло случиться так, что в конце каждый туземец знал, кроме своего, еще не менее чем k анекдотов.
Преподаватель выставил оценки по шкале от 0 до 100. В учебной части могут менять верхнюю границу шкалы на любое другое натуральное число, пересчитывая оценки пропорционально и округляя до целых. Нецелое число при округлении меняется до ближайшего целого; если дробная часть равна 0,5, направление округления учебная часть может выбирать любое, отдельно для каждой оценки. (Например, оценка 37 по шкале 100 после пересчета в шкалу 40 перейдёт в 37·40/100 = 14,8 и будет округлена до 15.)
Дьявол предлагает Человеку сыграть в следующую игру. Сначала Человек платит некоторую сумму s и называет 97 троек {i, j, k}, где i, j, k – натуральные числа, не превосходящие 100. Затем Дьявол рисует выпуклый 100-угольник A1A2...A100 с площадью, равной 100, и выплачивает Человеку выигрыш, равный сумме площадей 97 треугольников AiAjAk. При каком наибольшем s Человеку выгодно согласиться?
Как может действовать мудрец, чтобы выдержать испытание?
Страница: << 155 156 157 158 159 160 161 >> [Всего задач: 1308] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|