|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Окружность разделена в отношении 5:9:10 и через точки деления проведены касательные. Найдите наибольший угол в полученном треугольнике.
Окружность касается большего катета прямоугольного треугольника, проходит через вершину противолежащего острого угла и имеет центр на гипотенузе треугольника. Найдите радиус окружности, если катеты равны 5 и 12. Из цифр 1, 2, 3, 4, 5, 6, 7, 8, 9 составлены девять (не обязательно различных) девятизначных чисел; каждая из цифр использована в каждом числе ровно один раз. На какое наибольшее количество нулей может оканчиваться сумма этих девяти чисел? |
Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 106]
Сумму цифр числа a обозначим через S(a). Доказать, что если S(a) = S(2a), то число a делится на 9.
Какие цифры надо поставить вместо звёздочек, чтобы число 454** делилось на 2, 7 и 9?
Можно ли вместо звёздочек вставить в выражение НОК(*, *, *) – НОК(*, *, *) = 2009 в некотором порядке шесть последовательных натуральных чисел так, чтобы равенство стало верным?
Из цифр 1, 2, 3, 4, 5, 6, 7, 8, 9 составлены девять (не обязательно различных) девятизначных чисел; каждая из цифр использована в каждом числе ровно один раз. На какое наибольшее количество нулей может оканчиваться сумма этих девяти чисел?
Известно, что в десятичной записи числа 229 все цифры различны. Есть ли среди них цифра 0?
Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 106] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|