ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Ссылки по теме:
Статья А. Розенталя "Правило крайнего" Материалы по этой теме: Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На доске можно либо написать две единицы, либо стереть любые два уже написанных одинаковых числа n и написать вместо них числа n + 1 и n – 1. Какое минимальное количество таких операций требуется, чтобы получить число 2005? (Сначала доска была чистой.) Решение |
Страница: << 52 53 54 55 56 57 58 >> [Всего задач: 488]
На доске можно либо написать две единицы, либо стереть любые два уже написанных одинаковых числа n и написать вместо них числа n + 1 и n – 1. Какое минимальное количество таких операций требуется, чтобы получить число 2005? (Сначала доска была чистой.)
Пусть a1, a2, ..., a10 – натуральные числа, a1 < a2 < ... < a10. Пусть bk – наибольший делитель ak, меньший ak. Оказалось, что b1 > b2 > ... > b10.
На бесконечной в обе стороны ленте бумаги выписаны все целые числа, каждое – ровно по одному разу.
Страница: << 52 53 54 55 56 57 58 >> [Всего задач: 488] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|